Browsing Recommendation Based on the Intertemporal Choice Model

Browsing is an important but often inefficient information seeking strategy in information retrieval (IR). In this paper, we argue that an effective recommendation model can improve the user's browsing experience. We propose to adapt the intertemporal choice model to model the browsing behaviour of the user. The model can be used to recommend a browsing path to the users. The proposed model is based on the assumption that the browsing recommendation problem is an intertemporal choice problem. Using a simulated interactive retrieval system on several standard TREC test collections, the experimental results show that the proposed model is promising in recommending good browsing paths to the user.

[1]  Donna K. Harman,et al.  Overview of the first TREC conference , 1993, SIGIR.

[2]  Tsukasa Hirashima,et al.  Context-sensitive filtering for browsing in hypertext , 1998, IUI '98.

[3]  Marcia J. Bates,et al.  The design of browsing and berrypicking techniques for the online search interface , 1989 .

[4]  Ed H. Chi,et al.  Using information scent to model user information needs and actions and the Web , 2001, CHI.

[5]  Christopher Olston,et al.  ScentTrails: Integrating browsing and searching on the Web , 2003, TCHI.

[6]  Tao Luo,et al.  Discovery and Evaluation of Aggregate Usage Profiles for Web Personalization , 2004, Data Mining and Knowledge Discovery.

[7]  G. Loewenstein,et al.  Time Discounting and Time Preference: A Critical Review , 2002 .

[8]  Daniel Read,et al.  Chapter 21. Intertemporal Choice , 2008 .

[9]  Oren Etzioni,et al.  Towards adaptive Web sites: Conceptual framework and case study , 2000, Artif. Intell..

[10]  Pattie Maes,et al.  Footprints: History-Rich Web Browsing , 1997, RIAO.

[11]  David Ellis,et al.  A Behavioural Approach to Information Retrieval System Design , 1989, J. Documentation.

[12]  Peter Ingwersen,et al.  Developing a Test Collection for the Evaluation of Integrated Search , 2010, ECIR.

[13]  Craig MacDonald,et al.  Terrier Information Retrieval Platform , 2005, ECIR.

[14]  Ryen W. White,et al.  Evaluating implicit feedback models using searcher simulations , 2005, TOIS.

[15]  Mathias Géry,et al.  Non-linear reading for a structured web indexation , 2002, SIGIR '02.

[16]  Drazen Prelec,et al.  Preferences for sequences of outcomes. , 1993 .

[17]  Azreen Azman Intertemporal choice for browsing in information retrieval , 2007 .

[18]  Iain Campbell,et al.  Interactive Evaluation of the Ostensive Model Using a New Test Collection of Images with Multiple Relevance Assessments , 2000, Information Retrieval.

[19]  Huberman,et al.  Strong regularities in world wide web surfing , 1998, Science.

[20]  P. Samuelson A Note on Measurement of Utility , 1937 .

[21]  Ingemar J. Cox,et al.  Evaluating Relevance Feedback Algorithms for Searching on Small Displays , 2005, ECIR.