Data preparation for sample-based face detection

Face recognition is one of the most active biometric traits. Sample-based face detection is an active research topic in this area. It is of great interest to enhance the performance of the current face detection methods. In this paper, we propose new algorithms of sample selection and active samples generation to solve the problem of imbalanced training samples in the face detection task. Experimental results show that our proposed approaches enhance the performance of face detection, and the accuracy gain of the proposed approaches is significant when the available training samples are imbalanced or insufficient.

[1]  Daphne Koller,et al.  Support Vector Machine Active Learning with Applications to Text Classification , 2000, J. Mach. Learn. Res..

[2]  David A. Cohn,et al.  Training Connectionist Networks with Queries and Selective Sampling , 1989, NIPS.

[3]  Kenji Fukumizu,et al.  Active Learning in Multilayer Perceptrons , 1995, NIPS.

[4]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Bo Wu,et al.  Fast rotation invariant multi-view face detection based on real Adaboost , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[6]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[7]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[9]  Aapo Hyvärinen,et al.  Topographic Independent Component Analysis , 2001, Neural Computation.

[10]  Chih-Jen Lin,et al.  Training v-Support Vector Classifiers: Theory and Algorithms , 2001, Neural Computation.

[11]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[12]  Jian-xiong Dong,et al.  A Fast SVM Training Algorithm , 2003, Int. J. Pattern Recognit. Artif. Intell..

[13]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Chih-Jen Lin,et al.  Training nu-Support Vector Classifiers: Theory and Algorithms , 2001, Neural Comput..

[15]  Wolfgang Kinzel,et al.  Improving a Network Generalization Ability by Selecting Examples , 1990 .

[16]  Tom Downs,et al.  Exact Simplification of Support Vector Solutions , 2002, J. Mach. Learn. Res..

[17]  Andrew Blake,et al.  Computationally efficient face detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[18]  Ayhan Demiriz,et al.  Semi-Supervised Support Vector Machines , 1998, NIPS.

[19]  Jihoon Yang,et al.  Feature Subset Selection Using a Genetic Algorithm , 1998, IEEE Intell. Syst..

[20]  T. Watkin,et al.  Selecting examples for perceptrons , 1992 .

[21]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[22]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Stan Z. Li,et al.  Learning probabilistic distribution model for multi-view face detection , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[24]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[25]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[26]  Sollich Learning from minimum entropy queries in a large committee machine. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  Shaogang Gong,et al.  Support vector machine based multi-view face detection and recognition , 2004, Image Vis. Comput..

[28]  David A. Cohn,et al.  Neural Network Exploration Using Optimal Experiment Design , 1993, NIPS.

[29]  David J. C. MacKay,et al.  Information-Based Objective Functions for Active Data Selection , 1992, Neural Computation.

[30]  Jenq-Neng Hwang,et al.  Query-based learning applied to partially trained multilayer perceptrons , 1991, IEEE Trans. Neural Networks.

[31]  C. A. Murthy,et al.  A probabilistic active support vector learning algorithm , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[33]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[34]  Tom M. Mitchell,et al.  Generalization as Search , 2002 .

[35]  Greg Schohn,et al.  Less is More: Active Learning with Support Vector Machines , 2000, ICML.

[36]  Kah Kay Sung,et al.  Learning and example selection for object and pattern detection , 1995 .

[37]  Ran El-Yaniv,et al.  Online Choice of Active Learning Algorithms , 2003, J. Mach. Learn. Res..

[38]  David A. Cohn,et al.  Active Learning with Statistical Models , 1996, NIPS.

[39]  Jong-Min Park,et al.  Convergence and application of online active sampling using orthogonal pillar vectors , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Rainer Lienhart,et al.  Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection , 2003, DAGM-Symposium.

[41]  Zehang Sun,et al.  Object detection using feature subset selection , 2004, Pattern Recognit..

[42]  Narendra Ahuja,et al.  A SNoW-Based Face Detector , 1999, NIPS.

[43]  Gunnar Rätsch,et al.  Active Learning in the Drug Discovery Process , 2001, NIPS.

[44]  Y. Kabashima,et al.  Incremental learning with and without queries in binary choice problems , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[45]  Nello Cristianini,et al.  Query Learning with Large Margin Classi ersColin , 2000 .

[46]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[47]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[48]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Jack Sklansky,et al.  On Automatic Feature Selection , 1988, Int. J. Pattern Recognit. Artif. Intell..

[50]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[51]  Wen Gao,et al.  Expand training set for face detection by GA re-sampling , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..