Automatic Stage-form Circuit Reduction for Multistage Opamp Design Equation Generation

An automatic stage-form circuit reduction method for multistage operational amplifiers (opamps) is proposed. A tool based on this method can reduce a multistage opamp into a condensed stage-form macromodel, from which design equations can be generated automatically by another existing symbolic program. The proposed model generation method is fully symbolic; namely, it does not make reference to any numerical device values with a circuit, hence it does not require circuit biasing and sizing at an early design stage. The parameters coming with the generated models are dominant-effect approximation of the stage-related characteristics of the original circuits and thus are visually readable for design reasoning. Compensations in the original circuits are extracted automatically and reserved in the macromodel circuits. The user of this tool is only required to input the circuit stage information by identifying several key devices in the original circuits. As design equations can also be automatically generated from stage-form macromodels by a purely symbolic method, the proposed model generation method completes the path from a transistor-level opamp circuit to its characteristic design equations in a completely formal way. Examples are provided to demonstrate the effectiveness of the proposed model generation method, and numerical validation is further carried out to verify that the reduced symbolic models can successfully capture the key circuit behavior in the frequency domain for multistage opamps.

[1]  P.R. Gray,et al.  OPASYN: a compiler for CMOS operational amplifiers , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[2]  Florin Constantinescu,et al.  Computation of Approximate Symbolic Pole/Zero Expressions , 2004 .

[3]  Hoi Lee,et al.  A dual-path bandwidth extension amplifier topology with dual-loop parallel compensation , 2003 .

[4]  G. Debyser,et al.  Efficient analog circuit synthesis with simultaneous yield and robustness optimization , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[5]  Guoyong Shi,et al.  Toward automated reasoning for analog IC design by symbolic computation - A survey , 2018, Integr..

[6]  Antonio Torralba,et al.  FASY: a fuzzy-logic based tool for analog synthesis , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  Rob A. Rutenbar,et al.  OASYS: a framework for analog circuit synthesis , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[8]  Georges Gielen,et al.  An intelligent analog IC design system based on manipulation of design equations , 1990, IEEE Proceedings of the Custom Integrated Circuits Conference.

[9]  Antonio Torralba,et al.  0.7-V Three-Stage Class-AB CMOS Operational Transconductance Amplifier , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Man-Kay Law,et al.  A 0.016-mm2 144-µW Three-Stage Amplifier Capable of Driving 1-to-15 nF Capacitive Load With > 0.95-MHz GBW , 2013, IEEE J. Solid State Circuits.

[11]  Guoyong Shi,et al.  Topological Approach to Symbolic Pole–Zero Extraction Incorporating Design Knowledge , 2017, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[12]  C. Meixenberger,et al.  Towards an analog system design environment , 1989 .

[13]  Pak Kwong Chan,et al.  Cross Feedforward Cascode Compensation for Low-Power Three-Stage Amplifier With Large Capacitive Load , 2012, IEEE Journal of Solid-State Circuits.

[14]  Gaetano Palumbo,et al.  Advances in Reversed Nested Miller Compensation , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Stephen P. Boyd,et al.  Optimal design of a CMOS op-amp via geometric programming , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[16]  Ka Nang Leung,et al.  Three-stage large capacitive load amplifier with damping-factor-control frequency compensation , 2000, IEEE Journal of Solid-State Circuits.

[17]  Georges G. E. Gielen,et al.  Circuit simplification for the symbolic analysis of analogintegrated circuits , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[18]  P. Wambacq,et al.  Efficient symbolic computation of approximated small-signal characteristics , 1994, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '94.

[19]  Georges G. E. Gielen,et al.  AMGIE-A synthesis environment for CMOS analog integrated circuits , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[20]  Hoi Lee,et al.  Advances in active-feedback frequency compensation with power optimization and transient improvement , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  Gaetano Palumbo,et al.  High-Performance Four-Stage CMOS OTA Suitable for Large Capacitive Loads , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  Willy Sansen,et al.  Analog Circuit Design Optimization based on Symbolic Simulation and Simulated Annealing , 1989, ESSCIRC '89: Proceedings of the 15th European Solid-State Circuits Conference.

[23]  Jose Silva-Martinez,et al.  A robust feedforward compensation scheme for multistage operational transconductance amplifiers with no Miller capacitors , 2003, IEEE J. Solid State Circuits.

[24]  G. Palumbo,et al.  A compensation strategy for two-stage CMOS opamps based on current buffer , 1997 .

[25]  Bing J. Sheu,et al.  A knowledge-based approach to analog IC design , 1988 .

[26]  Guoyong Shi Graph-Pair Decision Diagram Construction for Topological Symbolic Circuit Analysis , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[27]  Alberto L. Sangiovanni-Vincentelli,et al.  ECSTASY: a new environment for IC design optimization , 1988, [1988] IEEE International Conference on Computer-Aided Design (ICCAD-89) Digest of Technical Papers.

[28]  Kurt Antreich,et al.  Automating the sizing of analog CMOS circuits by consideration of structural constraints , 1999, Design, Automation and Test in Europe Conference and Exhibition, 1999. Proceedings (Cat. No. PR00078).

[29]  G. Nebel,et al.  Symbolic Pole/Zero Calculation using SANTAFE , 1994, ESSCIRC '94: Twientieth European Solid-State Circuits Conference.

[30]  E. Sanchez-Sinencio,et al.  Single Miller capacitor frequency compensation technique for low-power multistage amplifiers , 2005, IEEE Journal of Solid-State Circuits.

[31]  Alberto L. Sangiovanni-Vincentelli,et al.  DELIGHT.SPICE: an optimization-based system for the design of integrated circuits , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[32]  Rob A. Rutenbar,et al.  Synthesis of high-performance analog circuits in ASTRX/OBLX , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[33]  Guoyong Shi,et al.  Symbolic behavioral modeling for slew and settling analysis of operational amplifiers , 2011, 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS).

[34]  A.L. Sangiovanni-Vincentelli,et al.  A survey of optimization techniques for integrated-circuit design , 1981, Proceedings of the IEEE.

[35]  A. Rodríguez-Vázquez,et al.  A Symbolic Pole/Zero Extraction Methodology Based on Analysis of Circuit Time-Constants , 2002 .

[36]  Hao Yu,et al.  Developing a web-based symbolic circuit analysis tool for learning and design aid , 2017, 2017 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD).

[37]  Davide Marano,et al.  Optimized Active Single-Miller Capacitor Compensation With Inner Half-Feedforward Stage for Very High-Load Three-Stage OTAs , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  Carl Sechen,et al.  Accurate extraction of simplified symbolic pole/zero expressions for large analog IC's , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.

[39]  O. Guerra,et al.  Approximate Symbolic Analysis of Hierarchically Decomposed Analog Circuits , 2002 .

[40]  Hoi Lee,et al.  Active-feedback frequency compensation for low-power multi-stage amplifiers , 2002, Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat. No.02CH37285).

[41]  Rob A. Rutenbar,et al.  Anaconda: simulation-based synthesis of analog circuits viastochastic pattern search , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[42]  Kong-Pang Pun,et al.  Reversed nested Miller compensation with voltage buffer and nulling resistor , 2003, IEEE J. Solid State Circuits.

[43]  Davide Marano,et al.  Improved Reversed Nested Miller Frequency Compensation Technique With Voltage Buffer and Resistor , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[44]  Zhangming Zhu,et al.  A 1.2-V 2.41-GHz Three-Stage CMOS OTA With Efficient Frequency Compensation Technique , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[45]  Ka Nang Leung,et al.  Analysis of multistage amplifier-frequency compensation , 2001 .

[46]  Hoi Lee,et al.  Active-feedback frequency-compensation technique for low-power multistage amplifiers , 2003, IEEE J. Solid State Circuits.

[47]  Rob A. Rutenbar Analog design automation: Where are we? Where are we going? , 1993, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '93.

[48]  Alfio Dario Grasso,et al.  High-Performance Three-Stage Single-Miller CMOS OTA With No Upper Limit of ${C}_{L}$ , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[49]  Ulf Schlichtmann,et al.  The Sizing Rules Method for CMOS and Bipolar Analog Integrated Circuit Synthesis , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[50]  Rob A. Rutenbar,et al.  A Prototype Framework for Knowledge-Based Analog Circuit Synthesis , 1987, 24th ACM/IEEE Design Automation Conference.

[51]  Christofer Toumazou,et al.  Analog IC design automation. II. Automated circuit correction by qualitative reasoning , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[52]  Gaetano Palumbo,et al.  Design guidelines for reversed nested Miller compensation in three-stage amplifiers , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[53]  Mohamed I. Elmasry,et al.  STAIC: an interactive framework for synthesizing CMOS and BiCMOS analog circuits , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[54]  Guoyong Shi,et al.  Symbolic Distortion Analysis of Multistage Amplifiers , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[55]  Gaetano Palumbo,et al.  Design methodology and advances in nested-Miller compensation , 2002 .

[56]  Guoyong Shi,et al.  Symbolic Circuit Reduction for Multistage Amplifier Macromodeling , 2018, 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS).

[57]  Nuno Horta,et al.  Automatic Analog IC Sizing and Optimization Constrained with PVT Corners and Layout Effects , 2016 .

[58]  Bo Hu,et al.  On symbolic model order reduction , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[59]  John R. Koza,et al.  Automated synthesis of analog electrical circuits by means of genetic programming , 1997, IEEE Trans. Evol. Comput..

[60]  J. A. Connelly,et al.  An Optimized Compensation Strategy for Two-Stage CMOS OP AMPS , 1995 .

[61]  Guoyong Shi Generating the Closed-Form Second-Order Characteristics of Analog Differential Cells by Symbolic Perturbation , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[62]  W. Sansen,et al.  Transconductance with capacitances feedback compensation for multistage amplifiers , 2005, Proceedings of the 30th European Solid-State Circuits Conference.

[63]  W. Sansen,et al.  AC boosting compensation scheme for low-power multistage amplifiers , 2004, IEEE Journal of Solid-State Circuits.

[64]  Rob A. Rutenbar,et al.  How to automate analog IC designs , 1988, IEEE Spectrum.

[65]  Hoi Lee,et al.  Dual Active-Capacitive-Feedback Compensation for Low-Power Large-Capacitive-Load Three-Stage Amplifiers , 2011, IEEE Journal of Solid-State Circuits.

[66]  Guoyong Shi,et al.  An interactive program for automatic network function generation with insights , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[67]  Ligang Hou,et al.  Impedance Adapting Compensation for Low-Power Multistage Amplifiers , 2011, IEEE Journal of Solid-State Circuits.

[68]  Willy Sansen,et al.  ARIADNE: A constraint-based approach to computer-aided synthesis and modeling of Analog integrated circuits , 1993 .

[69]  Francisco V. Fernández,et al.  Efficient symbolic computation of approximated small-signal characteristics of analog integrated circuits , 1995, IEEE J. Solid State Circuits.