State Estimation With Initial State Uncertainty

The problem of state estimation with initial state uncertainty is approached from a statistical decision theory point of view. The initial state is regarded as deterministic and unknown. It is only known that the initial state vector belongs to a specified parameter set. The (frequentist) risk is considered as the performance measure and the minimax approach is adopted. Minimax estimators are derived for some important cases of unbounded parameter sets. If the parameter set is bounded, a method of finding estimators whose maximum risk is arbitrarily close to that of a minimax estimator is provided. This method is illustrated with an example in which an estimator whose maximum risk is at most 3% larger than that of a minimax estimator is derived.

[1]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[2]  A note on minimax estimation and Kalman filtering , 1969 .

[3]  T. Wong,et al.  The Restricted Risk Bayes Approach and its Application to Linear State Estimation , 2006 .

[4]  Joel M. Morris,et al.  The Kalman filter: A robust estimator for some classes of linear quadratic problems , 1976, IEEE Trans. Inf. Theory.

[5]  T. Nishimura,et al.  On the a priori information in sequential estimation problems , 1965 .

[6]  H. Heffes The effect of erroneous models on the Kalman filter response , 1966 .

[7]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[8]  A. Charnes,et al.  Contributions to the Theory of Generalized Inverses , 1963 .

[9]  D. Bertsekas,et al.  Recursive state estimation for a set-membership description of uncertainty , 1971 .

[10]  P. Dorato,et al.  Dynamical systems and their applications: Linear theory , 1979, Proceedings of the IEEE.

[11]  P. Khargonekar,et al.  Filtering and smoothing in an H/sup infinity / setting , 1991 .

[12]  D. Looze,et al.  Noncausal minimax linear state estimation for systems with uncertain second order statistics , 1982, CDC 1982.

[13]  David Lindley,et al.  Statistical Decision Functions , 1951, Nature.

[14]  L. Mirsky A trace inequality of John von Neumann , 1975 .

[15]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[16]  Wook Hyun Kwon,et al.  $L_{2}-E$ FIR Smoothers for Deterministic Discrete-Time State–Space Signal Models , 2007, IEEE Transactions on Automatic Control.

[17]  Christopher Martin,et al.  Robust filtering and prediction for linear systems with uncertain dynamics: A game-theoretic approach , 1983, 1982 21st IEEE Conference on Decision and Control.

[18]  L. Lecam An Extension of Wald's Theory of Statistical Decision Functions , 1955 .

[19]  B. I. Anan Minimax Estimation of Statistically Uncertain Systems under the Choice of a Feedback Parameter , 1995 .

[20]  Gerald S. Rogers,et al.  Mathematical Statistics: A Decision Theoretic Approach , 1967 .

[21]  T. Nishimura Error bounds of continuous Kalman filters and the application to orbit determination problems , 1967, IEEE Transactions on Automatic Control.

[22]  W. Nelson,et al.  Minimax Solution of Statistical Decision Problems by Iteration , 1966 .

[23]  H. Poor,et al.  Minimax state estimation for linear stochastic systems with noise uncertainty , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[24]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[25]  A. Kurzhanski Identification - a theory of guaranteed estimates , 1989 .

[26]  J. Berger Admissible Minimax Estimation of a Multivariate Normal Mean with Arbitrary Quadratic Loss , 1976 .

[27]  D. Lainiotis,et al.  Optimal state-vector estimation for non-Gaussian initial state-vector , 1971 .

[28]  Pramod P. Khargonekar,et al.  FILTERING AND SMOOTHING IN AN H" SETTING , 1991 .

[29]  S. Verdú,et al.  Minimax linear observers and regulators for stochastic systems with uncertain second-order statistics , 1984 .

[30]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[31]  Peter J. Kempthorne,et al.  Numerical specification of discrete least favorable prior distributions , 1987 .

[32]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[33]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[34]  R. Berg Estimation and prediction for maneuvering target trajectories , 1983 .

[35]  M. Kao,et al.  Multiconfiguration Kalman filter design for high-performance GPS navigation , 1983 .

[36]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[37]  H. Vincent On Minimax Robustness: A General Approach and Applications , 1984 .

[38]  K Fan,et al.  Minimax Theorems. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Li Danyang,et al.  Optimal state estimation without the requirement of a priori statistics information of the initial state , 1994 .

[40]  Bor-Sen Chen,et al.  Minimax robust deconvolution filters under stochastic parametric and noise uncertainties , 1994, IEEE Trans. Signal Process..

[41]  James R. Zeidler,et al.  Adaptive tracking of linear time-variant systems by extended RLS algorithms , 1997, IEEE Trans. Signal Process..