Comparative study of the 1-2 exchange symmetries in neutrino frameworks with global and local validities

A new picture ``one-resonance - one-symmetry'' has been proposed recently to reveal nature of the reparametrization symmetry in neutrino oscillation in matter and where it resides: Symmetry of $i \leftrightarrow j$ state-exchange type exists at around a resonance with $i$ and $j$ being the states which participate in the level crossing. Consistently, the 1-2 and 1-3 state exchange symmetries are identified at around the solar and atmospheric resonances, respectively, in the locally-valid frameworks. On the other hand, the Denton {\it et al.} (DMP) perturbation theory, a globally-valid framework, has the 1-2 exchange symmetry which is akin to the one in the aforementioned solar-resonance perturbation (SRP) theory. In our picture, the symmetry must be associated with the resonance, not the framework, and if so these two 1-2 symmetries must be identical to each other. We conduct a comparative study of the 1-2 symmetries possessed by SRP and DMP to confirm their identity. An almost identity is verified, but in a highly nontrivial way.

[1]  H. Minakata Symmetry in Neutrino Oscillation in Matter: New Picture and the νSM-Non-Unitarity Interplay , 2022, Symmetry.

[2]  H. Minakata Symmetry Finder for neutrino oscillation in matter: Interplay between ν SM and non-unitarity , 2022 .

[3]  P. Denton,et al.  Parameter symmetries of neutrino oscillations in vacuum, matter, and approximation schemes , 2021, Physical Review D.

[4]  L. S. Miranda,et al.  Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA , 2021, The European Physical Journal C.

[5]  H. Minakata Toward diagnosing neutrino non-unitarity through CP phase correlations , 2021, 2112.06178.

[6]  H. Minakata Symmetry Finder applied to the 1–3 mass eigenstate exchange symmetry , 2021, The European Physical Journal C.

[7]  H. Minakata Symmetry finder: A method for hunting symmetry in neutrino oscillation , 2021, Physical Review D.

[8]  T. B. Watson,et al.  Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope , 2020, Physical Review D.

[9]  Xining Zhang,et al.  Compact perturbative expressions for oscillations with sterile neutrinos in matter , 2019, Physical Review D.

[10]  I. Martinez-Soler,et al.  Standard versus non-standard CP phases in neutrino oscillation in matter with non-unitarity , 2018, Progress of Theoretical and Experimental Physics.

[11]  S. Parke Theoretical Aspects of the Quantum Neutrino , 2018, Lepton Photon Interactions at High Energies.

[12]  K. Okumura,et al.  Using low energy atmospheric neutrinos for precision measurement of the mixing parameters , 2019, Proceedings of The 21st international workshop on neutrinos from accelerators — PoS(NuFact2019).

[13]  I. Martinez-Soler,et al.  Perturbing neutrino oscillations around the solar resonance , 2019, Progress of Theoretical and Experimental Physics.

[14]  M. Hartz,et al.  Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV , 2017, 1710.09126.

[15]  Shun Zhou Symmetric formulation of neutrino oscillations in matter and its intrinsic connection to renormalization-group equations , 2016, 1612.03537.

[16]  A. Smirnov Solar neutrinos: Oscillations or No-oscillations? , 2016, 1609.02386.

[17]  P. Denton,et al.  Compact perturbative expressions for neutrino oscillations in matter , 2016, Journal of High Energy Physics.

[18]  T. Schwetz,et al.  Generalized mass ordering degeneracy in neutrino oscillation experiments , 2016, 1604.05772.

[19]  S. Parke,et al.  Simple and compact expressions for neutrino oscillation probabilities in matter , 2015, 1505.01826.

[20]  The KamLAND Collaboration Reactor On-Off Antineutrino Measurement with KamLAND , 2013, 1303.4667.

[21]  T. Takeuchi,et al.  Analytical approximation of the neutrino oscillation matter effects at large θ13 , 2013, 1302.6773.

[22]  G. Altarelli,et al.  Discrete Flavor Symmetries and Models of Neutrino Mixing , 2010, 1002.0211.

[23]  H. Minakata,et al.  Parameter degeneracy in neutrino oscillation — Solution network and structural overview , 2010, 1001.4219.

[24]  H. Minakata Large-Theta(13) Perturbation Theory of Neutrino Oscillation , 2009, 0910.5545.

[25]  A. Gouvea,et al.  Physical range of majorana neutrino mixing parameters , 2008, 0804.3627.

[26]  Astronomy,et al.  Solar neutrino measurements , 2022 .

[27]  M. Lindner,et al.  Series expansions for three-flavor neutrino oscillation probabilities in matter , 2004, hep-ph/0402175.

[28]  E. Lisi,et al.  Quasi energy independent solar neutrino transitions , 2001, hep-ph/0105080.

[29]  H. Nunokawa,et al.  Preprint typeset in JHEP style.- HYPER VERSION Exploring Neutrino Mixing with Low Energy , 2001 .

[30]  J. Gluza,et al.  Parameters' domain in three flavour neutrino oscillations , 2001, hep-ph/0106283.

[31]  M. Freund Analytic approximations for three neutrino oscillation parameters and probabilities in matter , 2001, hep-ph/0103300.

[32]  M. B. Gavela,et al.  On the measurement of leptonic CP violation , 2001, hep-ph/0103258.

[33]  M. B. Gavela,et al.  Golden measurements at a neutrino factory , 2000, hep-ph/0002108.

[34]  H. Murayama,et al.  The Dark side of the solar neutrino parameter space , 2000, hep-ph/0002064.

[35]  H. Minakata,et al.  Solar Neutrinos and Leptonic CP Violation , 1999, hep-ph/9906530.

[36]  H. Nunokawa,et al.  CP violation versus the matter effect in long-baseline neutrino oscillation experiments , 1997, hep-ph/9705208.

[37]  佐藤 丈 CP and T violation test in neutrino oscillation , 1997 .

[38]  G. Scioscia,et al.  Three-flavor atmospheric neutrino anomaly , 1996, hep-ph/9607251.

[39]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[40]  Lisi,et al.  Tests of three-flavor mixing in long-baseline neutrino oscillation experiments. , 1996, Physical review. D, Particles and fields.

[41]  T. Kuo,et al.  Neutrino Oscillations in Matter , 1989 .

[42]  T. Kuo,et al.  T non-conservation in three-neutrino oscillations , 1987 .

[43]  S. Mikheyev,et al.  Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos , 1986 .

[44]  Sandip Pakvasa,et al.  Matter effects on three-neutrino oscillations , 1980 .

[45]  Z. Maki,et al.  Remarks on the unified model of elementary particles , 1962 .