Dynamical Mass Constraints on Low-Mass Pre-Main-Sequence Stellar Evolutionary Tracks: An Eclipsing Binary in Orion with a 1.0 M☉ Primary and a 0.7 M☉ Secondary

Abstract : We report the discovery of a double-lined, spectroscopic, eclipsing binary in the Orion star-forming region. We analyze the system spectroscopically and photometrically to empirically determine precise, distance-independent masses, radii, effective temperatures, and luminosities for both components. The measured masses for the primary and secondary, accurate to approx. 1%, are 1.01 and 0.73 M(solar), respectively; thus, the primary is a definitive pre-main-sequence solar analog, and the secondary is the lowest-mass star yet discovered among pre-main-sequence eclispsing binary systems. We use these fundamental measurements to test the predictions of per-main-sequence stellar evolutionary tracks. None of the models we examined correctly predict the masses of the two components simultaneously, and we implicate differences between the theoretical and empirical effective temperature scales for this failing. All of the models predict the observed slope of the mass-radius relationship reasonably well, though the observations tend to favor models with low convection efficiencies. Indeed considering our newly determined mass measurements together with other dynamical mass measurements of pre-main-sequence stars in the literature, as ell as measurements of Li abundances in these stars, we show that the data strongly favor evolutionary models with inefficient convection in the stellar interior, even though such models cannot reproduce the properties of the present-day Sun.

[1]  Francesco Palla,et al.  Star Formation in the Orion Nebula Cluster , 1999 .

[2]  New grids of ATLAS9 atmospheres I: Influence of convection treatments on model structure and on observable quantities , 2002, astro-ph/0206156.

[3]  D. Depoy,et al.  A 2.2 micrometer imaging survey of the Orion a molecular cloud , 1995 .

[4]  Andrea M. Ghez,et al.  A Test of Pre-Main-Sequence Evolutionary Models across the Stellar/Substellar Boundary Based on Spectra of the Young Quadruple GG Tauri , 1999, astro-ph/9902318.

[5]  L. Rebull Rotation of Young Low-Mass Stars in the Orion Nebula Cluster Flanking Fields , 2001 .

[6]  A. Blaauw The O Associations in the Solar Neighborhood , 1964 .

[7]  S. Mochnacki Accurate integrations of the Roche model , 1984 .

[8]  W. Warren,et al.  A photometric study of the Orion OB 1 association. 3: Subgroup analyses , 1978 .

[9]  R. K. Honeycutt,et al.  CCD ENSEMBLE PHOTOMETRY ON AN INHOMOGENEOUS SET OF EXPOSURES , 1992 .

[10]  Near-Infrared Photometric Variability of Stars toward the Orion A Molecular Cloud , 2001, astro-ph/0102446.

[11]  A Census of the Young Cluster IC 348 , 2003, astro-ph/0304409.

[12]  David R. Alexander,et al.  Low-Temperature Rosseland Opacities , 1975 .

[13]  L. Hillenbrand,et al.  Circumstellar Disk Candidates Identified from Ultraviolet Excesses in the Orion Nebula Cluster Flanking Fields , 2000 .

[14]  D. Popper A Pre--Main-Sequence Star in the Detached Binary EK Cephei , 1987 .

[15]  E. Feigelson,et al.  X-Ray-emitting Young Stars in the Orion Nebula , 2002, astro-ph/0203316.

[16]  W. Van Hamme,et al.  New limb-darkening coefficients for modeling binary star light curves , 1993 .

[17]  C. Dullemond,et al.  The pre-main sequence spectroscopic binary AK Scorpii revisited , 2003 .

[18]  R. A. Rossiter On the detection of an effect of rotation during eclipse in the velocity of the brigher component of beta Lyrae, and on the constancy of velocity of this system. , 1924 .

[19]  K. Strassmeier,et al.  Differential rotation on UZ Librae , 2003 .

[20]  M. Reid,et al.  Proper motions and distances of H2O maser sources. III - W51NORTH , 1981 .

[21]  Mark J. McCaughrean,et al.  Disks, Microjets, Windblown Bubbles, and Outflows in the Orion Nebula , 2000 .

[22]  B. Anthony-Twarog The H-beta distance scale for B stars: the Orion association. , 1982 .

[23]  Keivan G. Stassun,et al.  The Rotation Period Distribution of Pre-Main-Sequence Stars in and around the Orion Nebula , 1999 .

[24]  Johannes Andersen,et al.  Accurate masses and radii of normal stars , 1991 .

[25]  T. University,et al.  A Dynamical Mass Constraint for Pre-Main-Sequence Evolutionary Tracks: The Binary NTT 045251+3016 , 2001, astro-ph/0105017.

[26]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[27]  J. Kallrath,et al.  A New Method to Optimize Parameters in Solutions of Eclipsing Binary Light Curves , 1987 .

[28]  F. Palla,et al.  Binary Masses as a Test for Pre-Main-Sequence Tracks , 2001 .

[29]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[30]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[31]  Nicholas B. Suntzeff,et al.  The Pre-Main-Sequence Eclipsing Binary TY Coronae Australis: Precise Stellar Dimensions and Tests of Evolutionary Models , 1998 .

[32]  Robert L. Kurucz,et al.  New Opacity Calculations , 1991 .

[33]  S. Stahler The birthline for low-mass stars , 1983 .

[34]  G. Basri,et al.  Hamilton echelle spectra of young stars. I: Optical veiling , 1990 .

[35]  I. Goldman,et al.  Stellar Turbulent Convection: A Self-consistent Model , 1996 .

[36]  D. G. Hummer,et al.  Stellar Atmospheres: Beyond Classical Models , 1991 .

[37]  L. Hillenbrand On the Stellar Population and Star-Forming History of the Orion Nebula Cluster , 1997 .

[38]  R. Stellingwerf Period determination using phase dispersion minimization , 1978 .

[39]  Coryn A. L. Bailer-Jones,et al.  Stellar rotation and variability in the Orion Nebula Cluster , 2002 .

[40]  The Luminosity and Mass Function of the Trapezium Cluster: From B Stars to the Deuterium-burning Limit , 2002, astro-ph/0203122.

[41]  Dynamical Masses of T Tauri Stars and Calibration of Pre-Main-Sequence Evolution , 2000, astro-ph/0008370.

[42]  Robert E. Wilson,et al.  Realization of Accurate Close-Binary Light Curves: Application to MR Cygni , 1971 .

[43]  F. Vrba,et al.  X-ray sources in regions of star formation. III - Naked T Tauri stars associated with the Taurus-Auriga complex , 1988 .