Deep mitochondrial origin outside the sampled alphaproteobacteria

Mitochondria are ATP-generating organelles, the endosymbiotic origin of which was a key event in the evolution of eukaryotic cells1. Despite strong phylogenetic evidence that mitochondria had an alphaproteobacterial ancestry2, efforts to pinpoint their closest relatives among sampled alphaproteobacteria have generated conflicting results, complicating detailed inferences about the identity and nature of the mitochondrial ancestor. While most studies support the idea that mitochondria evolved from an ancestor related to Rickettsiales3–9, an order that includes several host-associated pathogenic and endosymbiotic lineages10,11, others have suggested that mitochondria evolved from a free-living group12–14. Here we re-evaluate the phylogenetic placement of mitochondria. We used genome-resolved binning of oceanic metagenome datasets and increased the genomic sampling of Alphaproteobacteria with twelve divergent clades, and one clade representing a sister group to all Alphaproteobacteria. Subsequent phylogenomic analyses that specifically address long branch attraction and compositional bias artefacts suggest that mitochondria did not evolve from Rickettsiales or any other currently recognized alphaproteobacterial lineage. Rather, our analyses indicate that mitochondria evolved from a proteobacterial lineage that branched off before the divergence of all sampled alphaproteobacteria. In light of this new result, previous hypotheses on the nature of the mitochondrial ancestor6,15,16 should be re-evaluated.Genome data for thirteen alphaproteobacteria-related clades expand the coverage of alphaproteobacterial diversity and suggest that mitochondria diverged from Alphaproteobacteria before the diversification of all currently known alphaproteobacterial lineages.

[1]  S. Giovannoni,et al.  New rRNA Gene-Based Phylogenies of the Alphaproteobacteria Provide Perspective on Major Groups, Mitochondrial Ancestry and Phylogenetic Instability , 2013, PloS one.

[2]  Ryan J. Yoder,et al.  Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade , 2011, Scientific reports.

[3]  S. Giovannoni,et al.  SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter , 2017, mBio.

[4]  Daniel Stubbs,et al.  PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. , 2013, Systematic biology.

[5]  A. Stuart A TEST FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION , 1955 .

[6]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[7]  David A Fitzpatrick,et al.  Genome phylogenies indicate a meaningful alpha-proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales. , 2006, Molecular biology and evolution.

[8]  Alexis Criscuolo,et al.  BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments , 2010, BMC Evolutionary Biology.

[9]  E. A. Morgan,et al.  Genetics of bacterial ribosomes. , 1977, Annual review of genetics.

[10]  T. Gabaldón,et al.  Late acquisition of mitochondria by a host with chimeric prokaryotic ancestry , 2016, Nature.

[11]  Siu-Ming Yiu,et al.  IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth , 2012, Bioinform..

[12]  Davide Heller,et al.  eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences , 2015, Nucleic Acids Res..

[13]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[14]  Thijs J. G. Ettema,et al.  Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade. , 2012, Molecular biology and evolution.

[15]  T. Embley,et al.  The SAR11 Group of Alpha-Proteobacteria Is Not Related to the Origin of Mitochondria , 2012, PloS one.

[16]  Kelly P. Williams,et al.  A Robust Species Tree for the Alphaproteobacteria , 2007, Journal of bacteriology.

[17]  Luis Pedro Coelho,et al.  Structure and function of the global ocean microbiome , 2015, Science.

[18]  B. Lang,et al.  Mitochondrial and Eukaryotic Origins: A Critical Review , 2012 .

[19]  Thijs J. G. Ettema,et al.  Comparative and Phylogenomic Evidence That the Alphaproteobacterium HIMB59 Is Not a Member of the Oceanic SAR11 Clade , 2013, PloS one.

[20]  B F Lang,et al.  Mitochondrial evolution. , 1999, Science.

[21]  W. Martin,et al.  Eukaryotic evolution, changes and challenges , 2006, Nature.

[22]  Martin Wu,et al.  An integrated phylogenomic approach toward pinpointing the origin of mitochondria , 2015, Scientific Reports.

[23]  P. Bork,et al.  Tara Oceans studies plankton at planetary scale , 2015, Science.

[24]  Peter G Foster,et al.  Modeling compositional heterogeneity. , 2004, Systematic biology.

[25]  Thijs J. G. Ettema,et al.  Single cell genomics of a rare environmental alphaproteobacterium provides unique insights into Rickettsiaceae evolution , 2015, The ISME Journal.

[26]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[27]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[28]  Thijs J. G. Ettema,et al.  A Phylometagenomic Exploration of Oceanic Alphaproteobacteria Reveals Mitochondrial Relatives Unrelated to the SAR11 Clade , 2011, PloS one.

[29]  MitoCOGs: clusters of orthologous genes from mitochondria and implications for the evolution of eukaryotes , 2014, BMC Evolutionary Biology.

[30]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[31]  Edward Susko,et al.  On reduced amino acid alphabets for phylogenetic inference. , 2007, Molecular biology and evolution.

[32]  P. Pevzner,et al.  metaSPAdes: a new versatile metagenomic assembler. , 2017, Genome research.

[33]  Debashish Bhattacharya,et al.  Pathogen to powerhouse , 2016, Science.

[34]  Olivier Gascuel,et al.  Empirical profile mixture models for phylogenetic reconstruction , 2008, Bioinform..

[35]  Brian C. Thomas,et al.  Community-wide analysis of microbial genome sequence signatures , 2009, Genome Biology.

[36]  Kelly P Williams,et al.  Phylogeny of Gammaproteobacteria , 2010, Journal of bacteriology.

[37]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[38]  B. Lang,et al.  Mitochondrial evolution. , 1999, Science.

[39]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[40]  Naiara Rodríguez-Ezpeleta,et al.  Detecting and overcoming systematic errors in genome-scale phylogenies. , 2007, Systematic biology.

[41]  J. Westberg,et al.  Intracellular pathogens go extreme: genome evolution in the Rickettsiales. , 2007, Trends in genetics : TIG.

[42]  Andrew Rambaut,et al.  Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees , 1997, Comput. Appl. Biosci..

[43]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[44]  D. Raoult,et al.  Intracellular Rickettsiales: Insights into manipulators of eukaryotic cells. , 2011, Trends in molecular medicine.

[45]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[46]  S. Gribaldo,et al.  The two-domain tree of life is linked to a new root for the Archaea , 2015, Proceedings of the National Academy of Sciences.

[47]  Natalia N. Ivanova,et al.  Insights into the phylogeny and coding potential of microbial dark matter , 2013, Nature.

[48]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[49]  C. Field,et al.  The comparison of the confidence regions in phylogeny. , 2005, Molecular biology and evolution.

[50]  Donovan H. Parks,et al.  Genome-Based Microbial Taxonomy Coming of Age. , 2016, Cold Spring Harbor perspectives in biology.

[51]  Anders F. Andersson,et al.  Binning metagenomic contigs by coverage and composition , 2014, Nature Methods.

[52]  R. Kirkegaard,et al.  mmgenome: a toolbox for reproducible genome extraction from metagenomes , 2016, bioRxiv.

[53]  E. Susko,et al.  Modeling Site Heterogeneity with Posterior Mean Site Frequency Profiles Accelerates Accurate Phylogenomic Estimation , 2018, Systematic biology.

[54]  Martin Wu,et al.  Phylogenomic Reconstruction Indicates Mitochondrial Ancestor Was an Energy Parasite , 2014, PloS one.

[55]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[56]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[57]  D. Daffonchio,et al.  Phylogenomic evidence for the presence of a flagellum and cbb(3) oxidase in the free-living mitochondrial ancestor. , 2011, Molecular biology and evolution.

[58]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.