Resolving the spatial architecture of myeloma and its microenvironment at the single-cell level

[1]  H. Goldschmidt,et al.  Resolving therapy resistance mechanisms in multiple myeloma by multi-omics subclone analysis. , 2023, Blood.

[2]  K. Rippe,et al.  Epigenetic signals that direct cell type–specific interferon beta response in mouse cells , 2022, Life Science Alliance.

[3]  Q. Hu,et al.  Deciphering spatial genomic heterogeneity at a single cell resolution in multiple myeloma , 2022, Nature Communications.

[4]  I. Ghobrial,et al.  Single-cell profiling of tumour evolution in multiple myeloma — opportunities for precision medicine , 2022, Nature Reviews Clinical Oncology.

[5]  D. Hose,et al.  Subclone-specific microenvironmental impact and drug response in refractory multiple myeloma revealed by single‐cell transcriptomics , 2021, Nature Communications.

[6]  H. Goldschmidt,et al.  Chromosome 1q21 abnormalities refine outcome prediction in patients with multiple myeloma - a meta-analysis of 2,596 trial patients , 2021, Haematologica.

[7]  P. Sonneveld,et al.  The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape , 2021, Nature Immunology.

[8]  Howard Y. Chang,et al.  ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis , 2021, Nature Genetics.

[9]  A. Rosenwald,et al.  Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma , 2021, Nature Medicine.

[10]  I. Amit,et al.  Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing , 2021, Nature Medicine.

[11]  Thomas M. Keane,et al.  Twelve years of SAMtools and BCFtools , 2020, GigaScience.

[12]  Martin J. Aryee,et al.  Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling , 2020, Nature Biotechnology.

[13]  Philip A. Ewels,et al.  The nf-core framework for community-curated bioinformatics pipelines , 2020, Nature Biotechnology.

[14]  Aibin He,et al.  Distinct epigenetic features of tumor-reactive CD8+ T cells in colorectal cancer patients revealed by genome-wide DNA methylation analysis , 2019, Genome Biology.

[15]  Howard Y. Chang,et al.  Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia , 2019, Nature Biotechnology.

[16]  Andrew K. Sewell,et al.  VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium , 2019, Nucleic Acids Res..

[17]  Stefano Monti,et al.  hypeR: An R Package for Geneset Enrichment Workflows , 2019, bioRxiv.

[18]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[19]  M. Vingron,et al.  Linking aberrant chromatin features in chronic lymphocytic leukemia to transcription factor networks , 2019, Molecular systems biology.

[20]  Howard Y. Chang,et al.  Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion , 2019, Nature Biotechnology.

[21]  Allon M Klein,et al.  Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. , 2019, Cell systems.

[22]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[23]  N. Weinhold,et al.  The Impact of Tumor Heterogeneity on Diagnostics and Novel Therapeutic Strategies in Multiple Myeloma , 2019, International journal of molecular sciences.

[24]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[25]  T. Schumacher,et al.  Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers , 2018, Nature Medicine.

[26]  I. Amit,et al.  Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma , 2018, Nature Medicine.

[27]  S. Mccarroll,et al.  Abstract 139: Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma , 2019, Tumor Biology.

[28]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[29]  Benjamin J. Ainscough,et al.  Standard operating procedure for somatic variant refinement of sequencing data with paired tumor and normal samples , 2018, Genetics in Medicine.

[30]  H. Goldschmidt,et al.  Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. , 2018, Blood.

[31]  M. Kumar,et al.  The presence of large focal lesions is a strong independent prognostic factor in multiple myeloma. , 2018, Blood.

[32]  Kevin R. Moon,et al.  Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.

[33]  R. Månsson,et al.  Active enhancer and chromatin accessibility landscapes chart the regulatory network of primary multiple myeloma. , 2018, Blood.

[34]  David J. Arenillas,et al.  JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework , 2017, Nucleic acids research.

[35]  Roland Eils,et al.  OTP: An automatized system for managing and processing NGS data. , 2017, Journal of biotechnology.

[36]  Z. Cai,et al.  BAFF is involved in macrophage-induced bortezomib resistance in myeloma , 2017, Cell Death and Disease.

[37]  Jaime Prilusky,et al.  McPAS‐TCR: a manually curated catalogue of pathology‐associated T cell receptor sequences , 2017, Bioinform..

[38]  O. Stephens,et al.  Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing , 2017, Nature Communications.

[39]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[40]  R. Schots,et al.  Tumour‐associated macrophage‐mediated survival of myeloma cells through STAT3 activation , 2017, The Journal of pathology.

[41]  S. Ariyan,et al.  Interlesional diversity of T cell receptors in melanoma with immune checkpoints enriched in tissue-resident memory T cells. , 2016, JCI insight.

[42]  P. Sonneveld,et al.  CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. , 2016, Blood.

[43]  N. Munshi,et al.  APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. , 2016, Blood.

[44]  G. Ahmann,et al.  Tumor-associated macrophages and extracellular matrix metalloproteinase inducer in prognosis of multiple myeloma , 2016, Leukemia.

[45]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[46]  Tal Galili,et al.  dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering , 2015, Bioinform..

[47]  Nicolai J. Birkbak,et al.  Clonal status of actionable driver events and the timing of mutational processes in cancer evolution , 2015, Science Translational Medicine.

[48]  P. Parren,et al.  Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma , 2015, mAbs.

[49]  B. Klein,et al.  The 7p15.3 (rs4487645) association for multiple myeloma shows strong allele-specific regulation of the MYC-interacting gene CDCA7L in malignant plasma cells , 2015, Haematologica.

[50]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[51]  N. Potter,et al.  Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma , 2014, Leukemia.

[52]  A. Nagler,et al.  Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype , 2014, Oncotarget.

[53]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[54]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[55]  G. Parmigiani,et al.  Heterogeneity of genomic evolution and mutational profiles in multiple myeloma , 2014, Nature Communications.

[56]  J. Carpten,et al.  Clonal competition with alternating dominance in multiple myeloma. , 2012, Blood.

[57]  Leah E. Escalante,et al.  Macrophages and mesenchymal stromal cells support survival and proliferation of multiple myeloma cells , 2012, British journal of haematology.

[58]  A. Børresen-Dale,et al.  The landscape of cancer genes and mutational processes in breast cancer , 2012, Nature.

[59]  G. Morgan,et al.  The genetic architecture of multiple myeloma , 2012, Nature Reviews Cancer.

[60]  R. Fanin,et al.  Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. , 2011, Blood.

[61]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[62]  Michael L. Wang,et al.  Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. , 2009, Blood.

[63]  Robert Gentleman,et al.  rtracklayer: an R package for interfacing with genome browsers , 2009, Bioinform..

[64]  J. Said,et al.  Pleiotrophin produced by multiple myeloma induces transdifferentiation of monocytes into vascular endothelial cells: a novel mechanism of tumor-induced vasculogenesis. , 2009, Blood.

[65]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[66]  Charles P. Lin,et al.  Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. , 2007, Blood.

[67]  Nicholas L. Bormann,et al.  scRepertoire: An R-based toolkit for single-cell immune receptor analysis. , 2020, F1000Research.

[68]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..