State Space Reductions for Alternating B

Quotienting by simulation equivalences is a well-established technique for reducing the size of nondeterministic Buchi automata. We adapt this technique to alternating Buchi automata. To this end we suggest two new quotients, namely minimax and semi-elective quotients, prove that they preserve the recognized languages, and show that computing them is not more difficult than computing quotients for nondeterministic Buchi automata. We explain the merits of of our quotienting procedures with respect to converting alternating Buchi automata into nondeterministic ones.

[1]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..

[2]  Thomas Noll,et al.  Truth/SLC - A Parallel Verification Platform for Concurrent Systems , 2001, CAV.

[3]  Kousha Etessami,et al.  A Hierarchy of Polynomial-Time Computable Simulations for Automata , 2002, CONCUR.

[4]  Yuri Gurevich,et al.  Trees, automata, and games , 1982, STOC '82.

[5]  Moshe Y. Vardi Nontraditional Applications of Automata Theory , 1994, TACS.

[6]  Alan J. Hu,et al.  Checking for Language Inclusion Using Simulation Preorders , 1991, CAV.

[7]  E. Allen Emerson,et al.  The Complexity of Tree Automata and Logics of Programs , 1999, SIAM J. Comput..

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  Robin Milner,et al.  An Algebraic Definition of Simulation Between Programs , 1971, IJCAI.

[10]  Thomas A. Henzinger,et al.  Computing simulations on finite and infinite graphs , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[11]  Pierre Wolper,et al.  An automata-theoretic approach to branching-time model checking , 2000, JACM.

[12]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[13]  Fausto Giunchiglia,et al.  Improved Automata Generation for Linear Temporal Logic , 1999, CAV.

[14]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[15]  Thomas A. Henzinger,et al.  Alternating Refinement Relations , 1998, CONCUR.

[16]  Thomas A. Henzinger,et al.  Fair Bisimulation , 2000, TACAS.

[17]  David E. Muller,et al.  Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in exponential time , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[18]  Satoru Miyano,et al.  Alternating Finite Automata on omega-Words , 1984, CAAP.

[19]  Thomas A. Henzinger,et al.  Fair Simulation , 1997, Inf. Comput..

[20]  Marcin Jurdzinski,et al.  Small Progress Measures for Solving Parity Games , 2000, STACS.

[21]  Paul Gastin,et al.  Fast LTL to Büchi Automata Translation , 2001, CAV.

[22]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[23]  Pierre Wolper,et al.  Simple on-the-fly automatic verification of linear temporal logic , 1995, PSTV.