Athermal Silicon Slot Waveguide With an Ormocomp Polymer Overlayer

We have demonstrated a proof-of-concept for an athermal silicon slot waveguide using Ormocomp as a top cladding. Preliminarily theoretical and experimental results show that the slot waveguide geometry can completely cancel out its thermo-optical coefficient, by tailoring the optical mode overlap with silicon, silicon dioxide, and Ormocomp.

[1]  Siva Yegnanarayanan,et al.  Sub-100-nanosecond Thermal Reconfiguration of Silicon Photonic Devices References and Links , 2022 .

[2]  Jie Sun,et al.  Adiabatic thermo-optic Mach-Zehnder switch. , 2013, Optics letters.

[3]  Axel Scherer,et al.  Compact and low power consumption tunable photonic crystal nanobeam cavity. , 2013, Optics Express.

[4]  Muhammad Saleem,et al.  Thermo-optic coefficient of Ormocomp and comparison of polymer materials in athermal replicated subwavelength resonant waveguide gratings , 2013 .

[5]  J. Michel,et al.  Co-polymer clad design for high performance athermal photonic circuits. , 2012, Optics express.

[6]  Vilson R. Almeida,et al.  Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control. , 2012, Optics express.

[7]  Frederic Y Gardes,et al.  Athermal waveguides for optical communication wavelengths. , 2011, Optics letters.

[8]  José Edimar Barbosa Oliveira,et al.  Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators. , 2011, Optics express.

[9]  A Adibi,et al.  A Temperature-Insensitive Third-Order Coupled-Resonator Filter for On-Chip Terabit/s Optical Interconnects , 2010, IEEE Photonics Technology Letters.

[10]  J. Michel,et al.  Athermal operation of silicon waveguides: spectral, second order and footprint dependencies. , 2010, Optics express.

[11]  Tiejun J. Xia,et al.  Flexible architectures for optical transport nodes and networks , 2010, IEEE Communications Magazine.

[12]  M. Lipson,et al.  Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers. , 2010, Optics express.

[13]  Geert Morthier,et al.  Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. , 2009, Optics express.

[14]  S.J.B. Yoo,et al.  Athermalizing and Trimming of Slotted Silicon Microring Resonators With UV-Sensitive PMMA Upper-Cladding , 2009, IEEE Photonics Technology Letters.

[15]  M. Uenuma,et al.  Temperature-independent silicon waveguide optical filter. , 2009, Optics letters.

[16]  O-Kyun Kwon,et al.  Controlling temperature dependence of silicon waveguide using slot structure. , 2008, Optics express.

[17]  Gyungock Kim,et al.  Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer , 2007, Journal of Lightwave Technology.

[18]  David T. Neilson,et al.  Photonics for switching and routing , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  Zhiyi Zhang,et al.  Thermo-optic coefficients of polymers for optical waveguide applications , 2006 .

[20]  Douglas B. Leviton,et al.  Temperature-dependent refractive index of silicon and germanium , 2006, SPIE Astronomical Telescopes + Instrumentation.

[21]  Lorenzo Pavesi,et al.  Optical interconnects : the silicon approach , 2006 .

[22]  M. Lipson,et al.  Nanotaper for compact mode conversion. , 2003, Optics letters.

[23]  Jun Zhou,et al.  Low-loss polymeric optical waveguides using electron-beam direct writing , 2001 .

[24]  S. Chu,et al.  Surface-roughness-induced contradirectional coupling in ring and disk resonators. , 1997, Optics letters.