Adaptive multiresolution discontinuous Galerkin schemes for conservation laws: multi-dimensional case

A multiresolution-based adaptation concept is proposed that aims at accelerating Discontinuous Galerkin schemes applied to nonlinear hyperbolic conservation laws. Opposite to standard adaptation concepts no error estimates are needed to tag mesh elements for refinement. Instead of this, a multiresolution analysis is performed on a hierarchy of nested grids for the data given on a uniformly refined mesh. This provides difference information between successive refinement levels, that may become negligibly small in regions where the solution is locally smooth. Applying hard thresholding the data are highly compressed and local grid adaptation is triggered by the remaining significant coefficients. A central mathematical problem addressed in this work is then to show that the adaptive solution is of the same accuracy as the reference solution on a uniformly refined mesh. Numerical comparisons demonstrate the efficiency of the concept and provide reliable estimates of the actual error in the numerical solution.

[1]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[2]  K. Thompson Time-dependent boundary conditions for hyperbolic systems, II , 1990 .

[3]  Jean-Luc Guermond,et al.  Implementation of the entropy viscosity method with the discontinuous Galerkin method , 2013 .

[4]  Yvon Maday,et al.  NEW TRENDS IN MULTIRESOLUTION AND ADAPTIVE METHODS FOR CONVECTION-DOMINATED PROBLEMS , 2009 .

[5]  A. Harten Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .

[6]  Chi-Wang Shu,et al.  A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods , 2013, J. Comput. Phys..

[7]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[8]  Yulong Xing,et al.  Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations , 2010 .

[9]  Ralf Hartmann,et al.  An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations , 2008, J. Comput. Phys..

[10]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[11]  Kolja Brix,et al.  Refinement and Connectivity Algorithms for Adaptive Discontinuous Galerkin Methods , 2011, SIAM J. Sci. Comput..

[12]  Siegfried Müller,et al.  A High-Order Discontinuous Galerkin Discretization with Multiwavelet-Based Grid Adaptation for Compressible Flows , 2015, J. Sci. Comput..

[13]  Georges Kesserwani,et al.  Multiwavelet discontinuous Galerkin h-adaptive shallow water model , 2015 .

[14]  Steven J. Ruuth Global optimization of explicit strong-stability-preserving Runge-Kutta methods , 2005, Math. Comput..

[15]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[16]  Wolfgang Dahmen,et al.  Local Decomposition of Refinable Spaces and Wavelets , 1996 .

[17]  Mario Ricchiuto,et al.  Stabilized residual distribution for shallow water simulations , 2009, J. Comput. Phys..

[18]  Yulong Xing,et al.  High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms , 2006, J. Comput. Phys..

[19]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[20]  Olivier Roussel,et al.  A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .

[21]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[22]  Guanghui Hu,et al.  An adaptive finite volume method for 2D steady Euler equations with WENO reconstruction , 2013, J. Comput. Phys..

[23]  O. Vasilyev,et al.  Wavelet Methods in Computational Fluid Dynamics , 2010 .

[24]  Siegfried Müller,et al.  Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.

[25]  Eitan Tadmor,et al.  Potential based , constraint preserving , genuinely multi-dimensional schemes for systems of conservation laws , 2010 .

[26]  Xiangxiong Zhang,et al.  On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..

[27]  Qiuhua Liang,et al.  An efficient unstructured MUSCL scheme for solving the 2D shallow water equations , 2015, Environ. Model. Softw..

[28]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[29]  Chi-Wang Shu,et al.  Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws , 2004, SIAM J. Numer. Anal..

[30]  Chi-Wang Shu,et al.  Stability Analysis and A Priori Error Estimates of the Third Order Explicit Runge-Kutta Discontinuous Galerkin Method for Scalar Conservation Laws , 2010, SIAM J. Numer. Anal..

[31]  Tao Tang,et al.  Error bounds for fractional step methods for conservation laws with source terms , 1995 .

[32]  Chi-Wang Shu TVB uniformly high-order schemes for conservation laws , 1987 .

[33]  Li Wang,et al.  Adjoint-based h-p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations , 2009, J. Comput. Phys..

[34]  A. Harten Adaptive Multiresolution Schemes for Shock Computations , 1994 .

[35]  R. D. Richtmyer Taylor instability in shock acceleration of compressible fluids , 1960 .

[36]  Andrew Brian Shelton,et al.  A multi-resolution discontinuous galerkin method for unsteady compressible flows , 2008 .

[37]  Sônia M. Gomes,et al.  A Fully Adaptive Multiresolution Scheme for Shock Computations , 2001 .

[38]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[39]  Ralf Hartmann,et al.  Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..

[40]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[41]  Jean-François Remacle,et al.  An adaptive discretization of shallow‐water equations based on discontinuous Galerkin methods , 2006 .

[42]  Rick Archibald,et al.  Adaptive discontinuous Galerkin methods in multiwavelets bases , 2011 .

[43]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[44]  Manuel Jesús Castro Díaz,et al.  On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas , 2007, J. Comput. Phys..

[45]  Alexander Voss,et al.  A Manual for the Template Class Library igpm_t_lib , 2000 .

[46]  J. Oden,et al.  hp-Version discontinuous Galerkin methods for hyperbolic conservation laws , 1996 .

[47]  E. Süli,et al.  hp‐Discontinuous Galerkin finite element methods for hyperbolic problems: error analysis and adaptivity , 2002 .

[48]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[49]  Karen Dragon Devine,et al.  A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .

[50]  K AlpertBradley A class of bases in L2 for the sparse representations of integral operators , 1993 .

[51]  Wolfgang Dahmen,et al.  Multiresolution schemes for conservation laws , 2001 .

[52]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[53]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[54]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[55]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[56]  Eitan Tadmor,et al.  Strong Stability-Preserving High-Order Time Discretization , 2001 .

[57]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[58]  Khamron Mekchay,et al.  Adaptive TVD-RK Discontinuous Galerkin Algorithms for Shallow Water Equations , 2012 .

[59]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[60]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[61]  A. Beck,et al.  On the accuracy of high-order discretizations for underresolved turbulence simulations , 2013 .

[62]  Philippe R. B. Devloo,et al.  Wavelets and adaptive grids for the discontinuous Galerkin method , 2005, Numerical Algorithms.

[63]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[64]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[65]  Dimitri J. Mavriplis,et al.  Adjoint-based h-p Adaptive Discontinuous Galerkin Methods for the Compressible Euler Equations , 2009 .

[66]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[67]  Elaine S. Oran,et al.  The numerical simulation of shock bifurcation near the end wall of a shock tube , 1995 .

[68]  Bernardo Cockburn,et al.  The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws , 1988 .

[69]  Sidi Mahmoud Kaber,et al.  Finite volume schemes on triangles coupled with multiresolution analysis , 1999 .

[70]  R Gandham,et al.  GPU Accelerated Discontinuous Galerkin Methods for Shallow Water Equations , 2014, 1403.1661.

[71]  Chi-Wang Shu,et al.  High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developments , 2016, J. Comput. Phys..

[72]  A. Harten Multiresolution representation of data: a general framework , 1996 .

[73]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[74]  P. Floch,et al.  Boundary conditions for nonlinear hyperbolic systems of conservation laws , 1988 .

[75]  Siegfried Müller,et al.  Adaptive multiresolution discontinuous Galerkin schemes for conservation laws: multi-dimensional case , 2016 .

[76]  Siegfried Müller,et al.  Numerical simulation of a single bubble by compressible two‐phase fluids , 2009 .

[77]  Woonjae Hwang,et al.  TWO-DIMENSIONAL RIEMANN PROBLEM FOR BURGERS' EQUATION , 2008 .

[78]  Lilia Krivodonova,et al.  Limiters for high-order discontinuous Galerkin methods , 2007, J. Comput. Phys..

[79]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[80]  A. Harti Discrete multi-resolution analysis and generalized wavelets , 1993 .

[81]  D. Sharp An overview of Rayleigh-Taylor instability☆ , 1984 .

[82]  Bradley K. Alpert,et al.  Adaptive solution of partial di erential equations in multiwavelet bases , 2002 .

[83]  Kun Xu,et al.  An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier-Stokes equations , 2016, J. Comput. Phys..

[84]  Bojan Popov,et al.  New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws , 2008, J. Comput. Phys..

[85]  Christina Freytag,et al.  Using Mpi Portable Parallel Programming With The Message Passing Interface , 2016 .

[86]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[87]  Bernardo Cockburn,et al.  The Runge-Kutta local projection discontinous Galerkin finite element method for conservation laws , 1990 .

[88]  Kai Schneider,et al.  Coherent Vortex Simulation of weakly compressible turbulent mixing layers using adaptive multiresolution methods , 2010, J. Comput. Phys..

[89]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[90]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[91]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[92]  Siegfried Müller,et al.  The Simulation of a Tsunami Run-Up Using Multiwavelet-Based Grid Adaptation , 2016 .

[93]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[94]  Richard M. Beam,et al.  Discrete Multiresolution Analysis Using Hermite Interpolation: Biorthogonal Multiwavelets , 2000, SIAM J. Sci. Comput..

[95]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[96]  Björn Sjögreen,et al.  Grid convergence of high order methods for multiscale complex unsteady viscous compressible flows , 2001 .

[97]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[98]  J. Oden,et al.  hp-version discontinuous Galerkin methods for hyperbolic conservation laws: A parallel adaptive strategy , 1995 .

[99]  Michael Woopen,et al.  An HDG Method for Unsteady Compressible Flows , 2015 .

[100]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[101]  D. Kröner Numerical Schemes for Conservation Laws , 1997 .

[102]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[103]  Chi-Wang Shu,et al.  On a cell entropy inequality for discontinuous Galerkin methods , 1994 .

[104]  Chi-Wang Shu,et al.  On positivity preserving finite volume schemes for Euler equations , 1996 .

[105]  Yulong Xing,et al.  A New Approach of High OrderWell-Balanced Finite Volume WENO Schemes and Discontinuous Galerkin Methods for a Class of Hyperbolic Systems with Source Terms† , 2005 .

[106]  Chi-Wang Shu,et al.  A Comparison of Troubled-Cell Indicators for Runge-Kutta Discontinuous Galerkin Methods Using Weighted Essentially Nonoscillatory Limiters , 2005, SIAM J. Sci. Comput..

[107]  Colin B. Macdonald,et al.  Optimal implicit strong stability preserving Runge--Kutta methods , 2009 .

[108]  Claus-Dieter Munz,et al.  Explicit Discontinuous Galerkin methods for unsteady problems , 2012 .

[109]  O. Oleinik Discontinuous solutions of non-linear differential equations , 1963 .

[110]  Jennifer K. Ryan,et al.  Multiwavelet troubled-cell indicator for discontinuity detection of discontinuous Galerkin schemes , 2014, J. Comput. Phys..

[111]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[112]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[113]  Jianxian Qiu,et al.  A Comparison of the Performance of Limiters for Runge-Kutta Discontinuous Galerkin Methods , 2013 .

[114]  Neil D. Sandham,et al.  Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters , 1999 .

[115]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[116]  Siegfried Müller,et al.  Adaptive Finite Volume Schemes for Conservation Laws Based on Local Multiresolution Techniques , 1999 .

[117]  Qiuhua Liang,et al.  Dynamically adaptive grid based discontinuous Galerkin shallow water model , 2012 .

[118]  H. T. Lin,et al.  The analogy between fluid friction and heat transfer of laminar forced convection on a flat plate , 1994 .

[119]  Stanley Osher,et al.  Convergence of Generalized MUSCL Schemes , 1985 .

[120]  Wolfgang Dahmen,et al.  Multiresolution schemes for conservation laws , 2001, Numerische Mathematik.

[121]  P. Drazin Kelvin–Helmholtz instability of finite amplitude , 1970, Journal of Fluid Mechanics.

[122]  Jean-François Remacle,et al.  An Adaptive Discontinuous Galerkin Technique with an Orthogonal Basis Applied to Compressible Flow Problems , 2003, SIAM Rev..

[123]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[124]  F. Bramkamp,et al.  An adaptive multiscale finite volume solver for unsteady and steady state flow computations , 2004 .

[125]  P. Bradshaw,et al.  Compressible turbulent channel flows: DNS results and modelling , 1995, Journal of Fluid Mechanics.

[126]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[127]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[128]  Charalambos Makridakis,et al.  A Posteriori Analysis of Discontinuous Galerkin Schemes for Systems of Hyperbolic Conservation Laws , 2014, SIAM J. Numer. Anal..

[129]  Gerald Warnecke,et al.  A Runge–Kutta discontinuous Galerkin method for the Euler equations , 2005 .

[130]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[131]  Georg May,et al.  A Discontinuous Galerkin Discretization with Multiwavelet-Based Grid Adadptation for Compressible Flows , 2011 .

[132]  Fritz Keinert,et al.  Wavelets and Multiwavelets , 2003 .

[133]  V. Strela Multiwavelets--theory and applications , 1996 .

[134]  Eitan Tadmor,et al.  Constraint Preserving Schemes Using Potential-Based Fluxes. II. Genuinely Multidimensional Systems of Conservation Laws , 2011, SIAM J. Numer. Anal..

[135]  Pep Mulet,et al.  Well-Balanced Adaptive Mesh Refinement for shallow water flows , 2014, J. Comput. Phys..

[136]  R. F. Warming,et al.  Multiresolution Analysis and Supercompact Multiwavelets , 2000, SIAM J. Sci. Comput..

[137]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[138]  R. Sanders On convergence of monotone finite difference schemes with variable spatial differencing , 1983 .

[139]  P. Lax Hyperbolic systems of conservation laws , 2006 .

[140]  Siegfried Müller,et al.  On the stability of fully adaptive multiscale schemes for conservation laws using approximate flux and source reconstruction strategies , 2010 .

[141]  Jeff D. Eldredge,et al.  A Hybrid WENO Scheme for Simulation of Shock Wave-Boundary Layer Interaction , 2009 .

[142]  Andreas Dedner,et al.  Error Control for a Class of Runge-Kutta Discontinuous Galerkin Methods for Nonlinear Conservation Laws , 2007, SIAM J. Numer. Anal..

[143]  Bernardo Cockburn,et al.  Quasimonotone Schemes for Scalar Conservation Laws. Part II , 1990 .

[144]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .

[145]  Andrew Pollard,et al.  Direct numerical simulation of compressible turbulent channel flows using the discontinuous Galerkin method , 2011 .