Conformational Activation Promotes CRISPR-Cas12a Catalysis and Resetting of the Endonuclease Activity

Cas12a, also known as Cpf1, is a type V-A CRISPR-Cas RNA-guided endonuclease that is used for genome editing based on its ability to generate specific dsDNA breaks. Here, we show cryo-EM structures of intermediates of the cleavage reaction, thus visualizing three protein regions that sense the crRNA-DNA hybrid assembly triggering the catalytic activation of Cas12a. Single-molecule FRET provides the thermodynamics and kinetics of the conformational activation leading to phosphodiester bond hydrolysis. These findings illustrate why Cas12a cuts its target DNA and unleashes unspecific cleavage activity, degrading ssDNA molecules after activation. In addition, we show that other crRNAs are able to displace the R-loop inside the protein after target DNA cleavage, terminating indiscriminate ssDNA degradation. We propose a model whereby the conformational activation of the enzyme results in indiscriminate ssDNA cleavage. The displacement of the R-loop by a new crRNA molecule will reset Cas12a specificity, targeting new DNAs.

[1]  Martyn Winn,et al.  Recent developments in the CCP-EM software suite , 2017, Acta crystallographica. Section D, Structural biology.

[2]  Chunlai Chen,et al.  The Conformational Dynamics of Cas9 Governing DNA Cleavage Are Revealed by Single-Molecule FRET. , 2018, Cell reports.

[3]  D. Patel,et al.  PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease , 2016, Cell.

[4]  T. Petersen,et al.  Direct observation of multiple conformational states in Cytochrome P450 oxidoreductase and their modulation by membrane environment and ionic strength , 2018, Scientific Reports.

[5]  Lasse L. Hildebrandt,et al.  iSMS: single-molecule FRET microscopy software , 2015, Nature Methods.

[6]  Eugene V Koonin,et al.  Annotation and Classification of CRISPR-Cas Systems. , 2015, Methods in molecular biology.

[7]  Ningning Li,et al.  The crystal structure of Cpf1 in complex with CRISPR RNA , 2016, Nature.

[8]  Jennifer A. Doudna,et al.  CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity , 2018, Science.

[9]  Jennifer A. Doudna,et al.  Enhanced proofreading governs CRISPR-Cas9 targeting accuracy , 2017, Nature.

[10]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[11]  Nam Ki Lee,et al.  Precision and accuracy of single-molecule FRET measurements - a worldwide benchmark study , 2017 .

[12]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[13]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[14]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[15]  J. Frank,et al.  Quantitative Connection between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryogenic Electron Microscopy and Single-Molecule Fluorescence Resonance Energy Transfer Investigations of the Ribosome. , 2015, The journal of physical chemistry. B.

[16]  Liisa Holm,et al.  Dali server update , 2016, Nucleic Acids Res..

[17]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[18]  C. Russo,et al.  Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy , 2017, Nature Communications.

[19]  Ines Fonfara,et al.  The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA , 2016, Nature.

[20]  Kira S. Makarova,et al.  Diversity and evolution of class 2 CRISPR–Cas systems , 2017, Nature Reviews Microbiology.

[21]  S. Stella,et al.  Class 2 CRISPR–Cas RNA-guided endonucleases: Swiss Army knives of genome editing , 2017, Nature Structural & Molecular Biology.

[22]  Claus A M Seidel,et al.  A toolkit and benchmark study for FRET-restrained high-precision structural modeling , 2012, Nature Methods.

[23]  Danny Kowerko,et al.  BOBA FRET: Bootstrap-Based Analysis of Single-Molecule FRET Data , 2013, PloS one.

[24]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[25]  S. Stella,et al.  Assembly of Francisella novicida Cpf1 endonuclease in complex with guide RNA and target DNA , 2017, Acta crystallographica. Section F, Structural biology communications.

[26]  Joseph H. Davis,et al.  Addressing preferred specimen orientation in single-particle cryo-EM through tilting , 2017, Nature Methods.

[27]  Scott Bailey,et al.  Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a) , 2018, Proceedings of the National Academy of Sciences.

[28]  S. West,et al.  Holliday junction resolvases. , 2014, Cold Spring Harbor perspectives in biology.

[29]  E. Olson,et al.  Publication : CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice , 2018 .

[30]  Jennifer A. Doudna,et al.  Enhanced proofreading governs CRISPR-Cas9 targeting accuracy , 2017, Nature.

[31]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[32]  H. Nishimasu,et al.  Real‐time observation of flexible domain movements in CRISPR–Cas9 , 2018, The EMBO journal.

[33]  H. Gohlke,et al.  Structural assemblies of the di- and oligomeric G-protein coupled receptor TGR5 in live cells: an MFIS-FRET and integrative modelling study , 2016, Scientific Reports.

[34]  R. Henderson,et al.  High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy☆ , 2013, Ultramicroscopy.

[35]  D. C. Swarts,et al.  Cas9 versus Cas12a/Cpf1: Structure–function comparisons and implications for genome editing , 2018, Wiley interdisciplinary reviews. RNA.

[36]  Feng Zhang,et al.  Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA , 2014, Cell.

[37]  A. Kozlov,et al.  SSB as an Organizer/Mobilizer of Genome Maintenance Complexes , 2008 .

[38]  Sjors H W Scheres,et al.  Cryo-EM: A Unique Tool for the Visualization of Macromolecular Complexity. , 2015, Molecular cell.

[39]  Kira S. Makarova,et al.  Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA , 2016, Cell.

[40]  Shaoxia Chen,et al.  Prevention of overfitting in cryo-EM structure determination , 2012, Nature Methods.

[41]  S. Stella,et al.  Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage , 2017, Nature.

[42]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[43]  Nam Ki Lee,et al.  Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. , 2005, Biophysical journal.

[44]  Conrad C. Huang,et al.  Visualizing density maps with UCSF Chimera. , 2007, Journal of structural biology.

[45]  S. McKinney,et al.  Analysis of single-molecule FRET trajectories using hidden Markov modeling. , 2006, Biophysical journal.

[46]  D. C. Swarts,et al.  Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. , 2017, Molecular cell.

[47]  G. Herman,et al.  Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization , 2007, Nature Methods.

[48]  B. Møller,et al.  Single molecule activity measurements of cytochrome P450 oxidoreductase reveal the existence of two discrete functional states. , 2014, ACS chemical biology.

[49]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[50]  G. Nienhaus,et al.  Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch. , 2017, Nature chemical biology.