Cox regression with doubly truncated responses and time-dependent covariates: the impact of innovation on firm survival

[1]  Dominik Wied,et al.  Truncating the exponential with a uniform distribution , 2020, Statistical Papers.

[2]  Elizabeth Webster,et al.  Innovation and the determinants of company survival , 2010, SSRN Electronic Journal.

[3]  M. Ugur,et al.  Innovation, firm survival and productivity: the state of the art , 2020, Economics of Innovation and New Technology.

[4]  R. Betensky,et al.  Inverse probability weighting methods for Cox regression with right‐truncated data , 2019, Biometrics.

[5]  Yongdai Kim,et al.  Additive time-dependent hazard model with doubly truncated data , 2019, Journal of the Korean Statistical Society.

[6]  S. Sotoca,et al.  Innovation and business survival: A long-term approach , 2018, Research Policy.

[7]  S. Xie,et al.  Cox regression model with doubly truncated data , 2018, Biometrics.

[8]  R. Betensky,et al.  Inverse probability weighted Cox regression for doubly truncated data , 2018, Biometrics.

[9]  Loon Ching Tang,et al.  Augmenting the Unreturned for Field Data With Information on Returned Failures Only , 2016, Technometrics.

[10]  Pål Børing The effects of firms’ R&D and innovation activities on their survival: a competing risks analysis , 2015 .

[11]  Petra Andries,et al.  Should Firms Outsource Their Basic Research? The Impact of Firm Size on In‐House Versus Outsourced R&D Productivity , 2014 .

[12]  O. Marsili,et al.  Going, going, gone: exit forms and the innovative capabilities of firms , 2012 .

[13]  Mei-Cheng Wang,et al.  Analysing bivariate survival data with interval sampling and application to cancer epidemiology. , 2012, Biometrika.

[14]  Robert Cull,et al.  External Finance and Firm Survival in the Aftermath of the Crisis: Evidence from Eastern Europe and Central Asia , 2012 .

[15]  Pao-Sheng Shen,et al.  Nonparametric analysis of doubly truncated data , 2010 .

[16]  Yu Shen,et al.  Statistical Methods for Analyzing Right‐Censored Length‐Biased Data under Cox Model , 2010, Biometrics.

[17]  J. de Uña-Álvarez,et al.  Bootstrapping the NPMLE for doubly truncated data , 2010 .

[18]  Silviano Esteve‐Pérez,et al.  Does a “survival-by-exporting” effect for SMEs exist? , 2008 .

[19]  Francine Lafontaine,et al.  Survival and Growth in Retail and Service Industries: Evidence from Franchised Chains , 2007 .

[20]  Zoltan Acs,et al.  How Is Entrepreneurship Good for Economic Growth? , 2006, Innovations: Technology, Governance, Globalization.

[21]  Jane Calvert,et al.  What’s Special about Basic Research? , 2006 .

[22]  Rebecca A. Betensky,et al.  Testing Quasi-Independence of Failure and Truncation Times via Conditional Kendall's Tau , 2005 .

[23]  Juan Llopis,et al.  The Determinants of Survival of Spanish Manufacturing Firms , 2004 .

[24]  O. Marsili,et al.  Survivor: The Role of Innovation in Firms' Survival , 2006 .

[25]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data: Kalbfleisch/The Statistical , 2002 .

[26]  P. Grambsch,et al.  Modeling Survival Data: Extending the Cox Model , 2000 .

[27]  Mei-Cheng Wang,et al.  Hazards regression analysis for length-biased data , 1996 .

[28]  David A. Binder,et al.  Fitting Cox's proportional hazards models from survey data , 1992 .

[29]  J. Barney Firm Resources and Sustained Competitive Advantage , 1991 .