Indoor Optical Wireless Systems: Design Challenges, Mitigating Techniques and future Prospects

The need for easy, reliable and fast connectivity is a growing requirement of today's short-range indoor communication systems, such as wireless local area networks (LANs). The requirement is for a communication medium that has high speed, low cost, and low power consumption. Optical wireless (Infrared) and radio are both viable solutions, but the promise of high unregulated bandwidth at a low cost makes optical wireless an attractive technical alternative. The goal of optical wireless system designers is to achieve reliable wireless connectivity between any devices in a network. This paper reviews the research efforts to date in the field of indoor optical wireless communications and identifies the technical obstacles and limitations of infrared (IR) medium. The methods of mitigating the inherent problems associated with the medium have also been discussed.

[1]  D.C.M. Lee,et al.  Trellis-coded pulse-position modulation for indoor wireless infrared communications , 1997, IEEE Trans. Commun..

[2]  Joseph M. Kahn,et al.  Performance evaluation of experimental 50-Mb/s diffuse infrared wireless link using on-off keying with decision-feedback equalization , 1996, IEEE Trans. Commun..

[3]  Kwang-Cheng Chen Medium access control of wireless LANs for mobile computing , 1994 .

[4]  J. S. Seeley Optical Thin Films , 1983 .

[5]  Joseph M. Kahn,et al.  Imaging diversity receivers for high-speed infrared wireless communication , 1998, IEEE Commun. Mag..

[6]  Joseph M. Kahn,et al.  Differential pulse-position modulation for power-efficient optical communication , 1999, IEEE Trans. Commun..

[7]  M. J. Gans,et al.  High speed infrared local wireless communication , 1987, IEEE Communications Magazine.

[8]  T. Muoi Receiver design for high-speed optical-fiber systems , 1984 .

[9]  M. Kavehard,et al.  Multispot diffusing configuration for wireless infrared access , 2000, IEEE Trans. Commun..

[10]  Jeffrey B. Carruthers,et al.  Wireless infrared communications , 2003, Proc. IEEE.

[11]  J P Savicki,et al.  Hemispherical concentrators and spectral filters for planar sensors in diffuse radiation fields. , 1994, Applied optics.

[12]  Edward A. Lee,et al.  Simulation of Multipath Impulse Response for Indoor Wireless Optical Channels , 1993, IEEE J. Sel. Areas Commun..

[13]  John R. Barry,et al.  Performance of pulse-position modulation on measured non-directed indoor infrared channels , 1996, IEEE Trans. Commun..

[14]  Volker Jungnickel,et al.  A Power and Bandwidth Efficient Modulation for Diffuse Wireless Infrared Communication , 2001 .

[15]  Joseph M. Kahn,et al.  Angle diversity for nondirected wireless infrared communication , 2000, IEEE Trans. Commun..

[16]  D. R. Wisely,et al.  155 Mbit/s optical wireless link using a bootstrapped silicon APD receiver , 1994 .

[17]  Rui Valadas,et al.  Performance of infrared transmission systems under ambient light interference , 1996 .

[18]  J R Barry,et al.  Link design for nondirected wireless infrared communications. , 1995, Applied optics.

[19]  J. Kahn,et al.  Multiple-subcarrier modulation for non-directed wireless infrared communication , 1994, 1994 IEEE GLOBECOM. Communications: The Global Bridge.

[20]  J. Kahn,et al.  Compound parabolic concentrators for narrowband wireless infrared receivers , 1995 .

[21]  Joseph M. Kahn,et al.  Multiple-Subcarrier Modulation for Nondirected Wireless Infrared Communication , 1994, IEEE J. Sel. Areas Commun..

[22]  U. Bapst,et al.  Wireless in-house data communication via diffuse infrared radiation , 1979, Proceedings of the IEEE.

[23]  Yatindra Nath Singh,et al.  A Review of Indoor Optical Wireless Systems , 2002 .

[24]  M. Amann,et al.  Low-threshold index-guided 1.5 μm long-wavelength vertical-cavity surface-emitting laser with high efficiency , 2000 .

[25]  Timothy O'Farrell,et al.  Infrared wireless communication using spread spectrum techniques , 2000 .

[26]  Markus Ortsiefer,et al.  Low-threshold InGaAlAs/lnP vertical-cavity surface-emitting laser diodes for 1.8 /spl mu/m wavelength range , 2000 .

[27]  Joseph M. Kahn,et al.  Rate-adaptive modulation techniques for infrared wireless communications , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[28]  Kwang-cheng Chen Medium access control of wireless LANs for mobile computing , 1994, IEEE Network.

[29]  Anthony C. Boucouvalas Indoor ambient light noise and its effect on wireless optical links , 1996 .

[30]  D. R. Wisely,et al.  Optical wireless: the story so far , 1998, IEEE Commun. Mag..