Pseudo-square AlGaN/GaN quantum wells for terahertz absorption

THz intersubband transitions are reported down to 160 μm within AlGaN/GaN heterostructures following a 4-layer quantum well design. In such a geometry, the compensation of the polarization-induced internal electric field is obtained through creating a gradual increase in polarization field throughout the quantum “trough” generated by three low-Al-content layers. The intersubband transitions show tunable absorption with respect to doping level as well as geometrical variations which can be regulated from 53 to 160 μm. They also exhibit tunnel-friendly designs which can be easily integrated into existing intersubband device architectures.

[1]  Norio Iizuka,et al.  Effect of Polarization Field on Intersubband Transition in AlGaN/GaN Quantum Wells , 1999 .

[2]  Wei Zhang,et al.  Far-infrared intersubband photodetectors based on double-step III-nitride quantum wells , 2012 .

[3]  Ali Rostami,et al.  Terahertz dual-wavelength quantum cascade laser based on GaN active region , 2012 .

[4]  S. L. Li,et al.  Tunability of intersubband transition wavelength in the atmospheric window in AlGaN/GaN multi-quantum wells grown on different AlGaN templates by metalorganic chemical vapor deposition , 2012 .

[5]  F. Julien,et al.  Intersubband absorption of cubic GaN/Al(Ga)N quantum wells in the near-infrared to terahertz spectral range , 2011 .

[6]  Aparna Das,et al.  Strain relaxation in GaN/AlxGa1-xN superlattices grown by plasma-assisted molecular-beam epitaxy , 2011 .

[7]  O. Byungsung,et al.  Exchange interactions in quantum well subbands , 1988 .

[8]  P. Vogl,et al.  nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.

[9]  E. Monroy,et al.  Terahertz absorbing AlGaN/GaN multi-quantum-wells: Demonstration of a robust 4-layer design , 2013 .

[10]  Enrico Bellotti,et al.  Monte Carlo simulation of terahertz quantum cascade laser structures based on wide-bandgap semiconductors , 2009 .

[11]  Hui C. Liu,et al.  Many-body effects on terahertz quantum well detectors , 2009 .

[12]  Eva Monroy,et al.  III-nitride semiconductors for intersubband optoelectronics: a review , 2013 .

[13]  Esther Baumann,et al.  GaN/AlN short-period superlattices for intersubband optoelectronics: A systematic study of their epitaxial growth, design, and performance , 2008 .

[14]  C. Bayram High-quality AlGaN/GaN superlattices for near- and mid-infrared intersubband transitions , 2012 .

[15]  Maria Tchernycheva,et al.  Midinfrared intersubband absorption in GaN/AlGaN superlattices on Si(111) templates , 2009 .

[16]  M. J. Manfra,et al.  Terahertz intersubband absorption in non-polar m-plane AlGaN/GaN quantum wells , 2014, 1406.1772.

[17]  M. Razeghi,et al.  Tunability of intersubband absorption from 4.5 to 5.3 μm in a GaN/Al0.2Ga0.8N superlattices grown by metalorganic chemical vapor deposition , 2009 .

[18]  Liang Tang,et al.  Improvement of near-infrared absorption linewidth in AlGaN/GaN superlattices by optimization of delta-doping location , 2012 .

[19]  Paul Harrison,et al.  Optically pumped terahertz laser based on intersubband transitions in a GaN∕AlGaN double quantum well , 2005 .

[20]  F. Julien,et al.  Terahertz intersubband absorption in GaN/AlGaN step quantum wells , 2010 .

[21]  Richard A. Soref,et al.  Active region design of a terahertz GaN/ Al0.15Ga0.85N quantum cascade laser , 2005 .

[22]  F. Julien,et al.  Effect of doping on the mid-infrared intersubband absorption in GaN/AlGaN superlattices grown on Si(111) templates , 2010 .