IsoStar: A library of information about nonbonded interactions

Crystallographic and theoretical (ab initio) data on intermolecular nonbondedinteractions have been gathered together in a computerised library(’IsoStar‘). The library contains information about the nonbonded contactsformed by some 250 chemical groupings. The data can be displayed visually andused to aid protein–ligand docking or the identification of bioisostericreplacements. Data from the library show that there is great variability inthe geometrical preferences of different types of hydrogen bonds, although ingeneral there is a tendency for H-bonds to form along lone-pair directions.The H-bond acceptor abilities of oxygen and sulphur atoms are highly dependenton intramolecular environments. The nonbonded contacts formed by manyhydrophobic groups show surprisingly strong directional preferences. Manyunusual nonbonded interactions are to be found in the library and are ofpotential value for designing novel biologically active molecules.

[1]  J. Thornton,et al.  Amino/aromatic interactions in proteins: is the evidence stacked against hydrogen bonding? , 1994, Journal of molecular biology.

[2]  John K. Ousterhout,et al.  Tcl and the Tk Toolkit , 1994 .

[3]  J. Dunitz,et al.  Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles , 1977 .

[4]  Frank H. Allen,et al.  The Nature and Geometry of Intermolecular Interactions between Halogens and Oxygen or Nitrogen , 1996 .

[5]  G. A. Jeffrey,et al.  A survey of O-H⋯O hydrogen bond geometries determined by neutron diffraction , 1981 .

[6]  Philip M. Dean,et al.  Three-dimensional hydrogen-bond geometry and probability information from a crystal survey , 1996, J. Comput. Aided Mol. Des..

[7]  Peter Murray-Rust,et al.  Iodine⋯X(O, N, S) intermolecular contacts: models of thyroid hormoneprotein binding interactions using information from the cambridge crystallographic data files , 1984 .

[8]  Marina Tintelnot,et al.  Geometries of functional group interactions in enzyme-ligand complexes: Guides for receptor modelling , 1989, J. Comput. Aided Mol. Des..

[9]  Peter Murray-Rust,et al.  Computer retrieval and analysis of molecular geometry. 4. Intermolecular interactions , 1979 .

[10]  A. Bondi van der Waals Volumes and Radii , 1964 .

[11]  R. Cramer,et al.  Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. , 1988, Journal of the American Chemical Society.

[12]  D. M. F. Aalten,et al.  PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules , 1996, J. Comput. Aided Mol. Des..

[13]  Olga Kennard,et al.  Geometry of the imino-carbonyl (N-H...O:C) hydrogen bond. 1. Lone-pair directionality , 1983 .

[14]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[15]  J. Lommerse,et al.  Characterising non-covalent interactions with the Cambridge Structural Database. , 1997, Journal of enzyme inhibition.

[16]  J. Singh,et al.  The geometries of interacting arginine‐carboxyls in proteins , 1987, FEBS letters.

[17]  Gerhard Klebe,et al.  A fast and efficient method to generate biologically relevant conformations , 1994, J. Comput. Aided Mol. Des..

[18]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[19]  Owen Johnson,et al.  The development of versions 3 and 4 of the Cambridge Structural Database System , 1991, J. Chem. Inf. Comput. Sci..

[20]  J. Glusker Structural aspects of metal liganding to functional groups in proteins. , 1991, Advances in protein chemistry.

[21]  A. Gavezzotti,et al.  Statistical analysis of some structural properties of solid hydrocarbons , 1989 .

[22]  B Pullman,et al.  ELECTRON-DONOR AND -ACCEPTOR PROPERTIES OF BIOLOGICALLY IMPORTANT PURINES, PYRIMIDINES, PTERIDINES, FLAVINS, AND AROMATIC AMINO ACIDS. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[23]  S. Price,et al.  On the electrostatic directionality of NH…OC hydrogen bonding , 1989 .

[24]  Anthony J. Stone,et al.  An intermolecular perturbation theory for the region of moderate overlap , 1984 .

[25]  G. A. Jeffrey,et al.  Cooperative aspects of hydrogen bonding in carbohydrates , 1978 .

[26]  Gautam R. Desiraju,et al.  Crystal engineering : the design of organic solids , 1989 .

[27]  J. Thornton,et al.  Atlas of protein side-chain interactions , 1992 .

[28]  Robin Taylor,et al.  Hydrogen bonding of carbonyl, ether, and ester oxygen atoms with alkanol hydroxyl groups , 1997 .

[29]  Jack D. Dunitz,et al.  Geometrical reaction coordinates. II. Nucleophilic addition to a carbonyl group , 1973 .

[30]  G. Klebe The use of composite crystal-field environments in molecular recognition and the de novo design of protein ligands. , 1994, Journal of molecular biology.

[31]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[32]  Peter Murray-Rust,et al.  Directional hydrogen bonding to sp2- and sp3-hybridized oxygen atoms and its relevance to ligand-macromolecule interactions , 1984 .

[33]  Peter Murray-Rust,et al.  Mapping the atomic environment of functional groups: turning 3D scatter plots into pseudo-density contours , 1984 .

[34]  Anthony J. Stone,et al.  Computation of charge-transfer energies by perturbation theory , 1993 .

[35]  Olga Kennard,et al.  Crystallographic evidence for the existence of CH.cntdot..cntdot..cntdot.O, CH.cntdot..cntdot..cntdot.N and CH.cntdot..cntdot..cntdot.Cl hydrogen bonds , 1982 .

[36]  G. M. Smith,et al.  Electronic distributions within protein phenylalanine aromatic rings are reflected by the three-dimensional oxygen atom environments. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[37]  F. Temple Burling,et al.  Computational studies of nonbonded sulfur-oxygen and selenium-oxygen interactions in the thiazole and selenazole nucleosides , 1992 .

[38]  B. Katz,et al.  Binding to protein targets of peptidic leads discovered by phage display: crystal structures of streptavidin-bound linear and cyclic peptide ligands containing the HPQ sequence. , 1995, Biochemistry.

[39]  Margaret C. Etter,et al.  Encoding and decoding hydrogen-bond patterns of organic compounds , 1990 .

[40]  Jan Kroon,et al.  O-H · O Hydrogen bonds in molecular crystals a statistical and quantum-chemical analysis , 1975 .

[41]  Sarah L. Price,et al.  Role of electrostatic interactions in determining the crystal structures of polar organic molecules. A distributed multipole study , 1996 .

[42]  Olga Kennard,et al.  Hydrogen-bond geometry in organic crystals , 1984 .

[43]  Gerhard Klebe,et al.  What Can We Learn from Molecular Recognition in Protein–Ligand Complexes for the Design of New Drugs? , 1996 .

[44]  Gautam R. Desiraju,et al.  The role of Cl.cntdot..cntdot..cntdot.Cl and C-H.cntdot..cntdot..cntdot.O interactions in the crystal engineering of 4-.ANG. short-axis structures , 1986 .

[45]  Gerhard Klebe,et al.  Oxygen and Nitrogen in Competitive Situations: Which is the Hydrogen‐Bond Acceptor? , 1996 .

[46]  Frank H. Allen,et al.  Resonance-induced hydrogen bonding at sulfur acceptors in R1R2C=S and R1CS2- systems , 1997 .

[47]  Kaddour Lamara,et al.  3H-Azepines and related systems. Part 5. Photo-induced ring expansions of o-Azidobenzonitriles to 3-Cyano- and 7-Cyano-3H- azepin-2(1H)-ones , 1994 .

[48]  D. A. Dougherty,et al.  Cation-π Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp , 1996, Science.

[49]  Robin Taylor,et al.  Use of crystallographic data in searching for isosteric replacements: Composite crystal-field environments of nitro and carbonyl groups† , 1990 .

[50]  J. Goodfellow,et al.  Solvent interactions with pi ring systems in proteins. , 1995, Protein engineering.