Machine learning-based radiomics analysis of preoperative functional liver reserve with MRI and CT image

[1]  S. Nara,et al.  Automated Three-Dimensional Liver Reconstruction with Artificial Intelligence for Virtual Hepatectomy , 2022, Journal of Gastrointestinal Surgery.

[2]  Chen Chen,et al.  Classification of multi-differentiated liver cancer pathological images based on deep learning attention mechanism , 2022, BMC Medical Informatics and Decision Making.

[3]  W. Cai,et al.  Radiomics Analysis of Gd-EOB-DTPA Enhanced Hepatic MRI for Assessment of Functional Liver Reserve. , 2021, Academic radiology.

[4]  A. Jemal,et al.  Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries , 2021, CA: a cancer journal for clinicians.

[5]  Jun-Tao Ji,et al.  A cohort study of hepatectomy-related complications and prediction model for postoperative liver failure after major liver resection in 1,441 patients without obstructive jaundice , 2021, Annals of translational medicine.

[6]  D. Gu,et al.  Radiomics in liver diseases: Current progress and future opportunities , 2020, Liver international : official journal of the International Association for the Study of the Liver.

[7]  Yupeng Zhang,et al.  Radiomics features on non-contrast-enhanced CT scan can precisely classify AVM-related hematomas from other spontaneous intraparenchymal hematoma types , 2018, European Radiology.

[8]  M. Field,et al.  The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review , 2018, Translational Cancer Research.

[9]  J. Bruix,et al.  Diagnosis and staging of hepatocellular carcinoma (HCC): current guidelines. , 2018, European journal of radiology.

[10]  J. Choi Radiomics and Deep Learning in Clinical Imaging: What Should We Do? , 2018, Nuclear Medicine and Molecular Imaging.

[11]  Aya Kamaya,et al.  2017 Version of LI-RADS for CT and MR Imaging: An Update. , 2017, Radiographics : a review publication of the Radiological Society of North America, Inc.

[12]  P. Lambin,et al.  Radiomics: the bridge between medical imaging and personalized medicine , 2017, Nature Reviews Clinical Oncology.

[13]  Fridtjof Nüsslin,et al.  “Radio-oncomics” , 2017, Strahlentherapie und Onkologie.

[14]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[15]  A. De Gasperi,et al.  Indocyanine green kinetics to assess liver function: Ready for a clinical dynamic assessment in major liver surgery? , 2016, World journal of hepatology.

[16]  J. Lee,et al.  Noninvasive Diagnosis of Hepatocellular Carcinoma: Elaboration on Korean Liver Cancer Study Group-National Cancer Center Korea Practice Guidelines Compared with Other Guidelines and Remaining Issues , 2016, Korean journal of radiology.

[17]  B. Hamm,et al.  Imaging-Based Liver Function Tests – Past, Present and Future , 2015, Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren.

[18]  C. Sirlin,et al.  CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features. , 2014, Radiology.

[19]  Hyung Jin Won,et al.  Assessment of Hepatic Function with Gd-EOB-DTPA-Enhanced Hepatic MRI , 2012, Digestive Diseases.

[20]  H. Hussain,et al.  Primovist, Eovist: what to expect? , 2012, Journal of hepatology.

[21]  C. Moulton,et al.  Predictors of peri-opertative morbidity and liver dysfunction after hepatic resection in patients with chronic liver disease. , 2011, HPB : the official journal of the International Hepato Pancreato Biliary Association.

[22]  E. Taioli,et al.  Oral HPV Infection and Sexuality: A Cross-Sectional Study in Women , 2011, International journal of molecular sciences.

[23]  N. Kokudo,et al.  Assessment of liver function for safe hepatic resection , 2009, Hepatology research : the official journal of the Japan Society of Hepatology.

[24]  Rajiv Jalan,et al.  Liver failure after partial hepatic resection: definition, pathophysiology, risk factors and treatment , 2008, Liver international : official journal of the International Association for the Study of the Liver.

[25]  P. Giral,et al.  Sampling variability of liver biopsy in nonalcoholic fatty liver disease. , 2005, Gastroenterology.

[26]  Y. Matsui,et al.  Functional hepatic volume measured by technetium-99m-galactosyl-human serum albumin liver scintigraphy: comparison between hepatocyte volume and liver volume by computed tomography , 2001, American Journal of Gastroenterology.

[27]  S. Kawasaki,et al.  Surgery for small liver cancers. , 1993, Seminars in surgical oncology.

[28]  Robert Kerrin Hills,et al.  Research on Cancer , 1925, Nature.

[29]  Tessa S Cook,et al.  The Importance of Imaging Informatics and Informaticists in the Implementation of AI. , 2019, Academic radiology.

[30]  Hongyang Wang,et al.  Precision diagnosis and treatment of liver cancer in China. , 2018, Cancer letters.

[31]  Robert M. Marks,et al.  Evidence Supporting LI-RADS Major Features for CT- and MR Imaging-based Diagnosis of Hepatocellular Carcinoma: A Systematic Review. , 2018, Radiology.

[32]  Junqi Guo,et al.  A data-driven framework for learners' cognitive load detection using ECG-PPG physiological feature fusion and XGBoost classification , 2018, IIKI.

[33]  G. Gores,et al.  Hepatocellular carcinoma , 2016, Nature Reviews Disease Primers.

[34]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[35]  D. Woodfield Hepatocellular carcinoma. , 1986, The New Zealand medical journal.

[36]  E. Somers International Agency for Research on Cancer. , 1985, CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne.