Proximity Graphs for Defining Surfaces over Point Clouds

We present a new definition of an implicit surface over a noisy point cloud. It can be evaluated very fast, but, unlike other definitions based on the moving least squares approach, it does not suffer from artifacts. In order to achieve robustness, we propose to use a different kernel function that approximates geodesic distances on the surface by utilizing a geometric proximity graph. The starting point in the graph is determined by approximate nearest neighbor search. From a variety of possibilities, we have examined the Delaunay graph and the sphere-of-influence graph (SIG). For both, we propose to use modifications, the r-SIG and the pruned Delaunay graph. We have implemented our new surface definition as well as a test environment which allows to visualize and to evaluate the quality of the surfaces. We have evaluated the different surfaces induced by different proximity graphs. The results show that artifacts and the root mean square error are significantly reduced.

[1]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[2]  Sunghee Choi,et al.  A Simple Algorithm for Homeomorphic Surface Reconstruction , 2002, Int. J. Comput. Geom. Appl..

[3]  Marc Alexa,et al.  Approximating and Intersecting Surfaces from Points , 2003, Symposium on Geometry Processing.

[4]  Gabriel Zachmann,et al.  Point Cloud Collision Detection , 2004, Comput. Graph. Forum.

[5]  Bryan L. Shader,et al.  Sphere-of-influence graphs using the sup-norm , 2000 .

[6]  T. S. Michael,et al.  Sphere of Influence Graphs and the L-metric , 2003, Discret. Appl. Math..

[7]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2003, ACM Trans. Graph..

[8]  Olivier Devillers,et al.  The Delaunay Hierarchy , 2002, Int. J. Found. Comput. Sci..

[9]  Godfried T. Toussaint,et al.  Relative neighborhood graphs and their relatives , 1992, Proc. IEEE.

[10]  Marc Alexa,et al.  Approximating Bounded, Non-Orientable Surfaces from Points (Figures 5, 6, and 7) , 2004, SMI.

[11]  D. Levin,et al.  Mesh-Independent Surface Interpolation , 2004 .

[12]  Nina Amenta,et al.  Defining point-set surfaces , 2004, ACM Trans. Graph..

[13]  Rex A. Dwyer The Expected Size of the Sphere-of-influence Graph , 1995, Comput. Geom..

[14]  Hiromasa Suzuki,et al.  Approximate shortest path on a polyhedral surface based on selective refinement of the discrete graph and its applications , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[15]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[16]  A. Adamson,et al.  Approximating bounded, nonorientable surfaces from points , 2004, Proceedings Shape Modeling Applications, 2004..

[17]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[18]  Yijie Han,et al.  Shortest paths on a polyhedron , 1990, SCG '90.

[19]  C. A. Rogers Covering a sphere with spheres , 1963 .

[20]  Matthias Zwicker,et al.  3 Ideal Resampling 3 . 1 Sampling and Aliasing , 2022 .

[21]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[22]  Remco C. Veltkamp,et al.  3D Computational Morphology , 1993, Comput. Graph. Forum.

[23]  Tamal K. Dey,et al.  Tight cocone: a water-tight surface reconstructor , 2003, SM '03.

[24]  In-Kwon Lee,et al.  Curve reconstruction from unorganized points , 2000, Comput. Aided Geom. Des..

[25]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2005, SIGGRAPH Courses.

[26]  N. Amenta,et al.  Defining point-set surfaces , 2004, SIGGRAPH 2004.

[27]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[28]  Tamal K. Dey,et al.  Provable surface reconstruction from noisy samples , 2004, SCG '04.

[29]  Jean-Daniel Boissonnat,et al.  Smooth surface reconstruction via natural neighbour interpolation of distance functions , 2000, SCG '00.

[30]  Sunghee Choi,et al.  A simple algorithm for homeomorphic surface reconstruction , 2000, SCG '00.

[31]  Donald P. Greenberg,et al.  Combining edges and points for interactive high-quality rendering , 2003, ACM Trans. Graph..

[32]  J. W. Jaromczyk The Expected Size of the Sphere-of-Influence Graph , 1995 .

[33]  W. R. Buckland,et al.  Outliers in Statistical Data , 1979 .

[34]  Vic Barnett,et al.  Outliers in Statistical Data , 1980 .

[35]  Bernd Hamann,et al.  Surface Reconstruction Using Adaptive Clustering Methods , 1999, Geometric Modelling.