Particle Swarm Optimization - A Survey

Particle Swarm Optimization (PSO) is a search method which utilizes a set of agents that move through the search space to find the global minimum of an objective function. The trajectory of each particle is determined by a simple rule incorporating the current particle velocity and exploration histories of the particle and its neighbors. Since its introduction by Kennedy and Eberhart in 1995, PSO has attracted many researchers due to its search efficiency even for a high dimensional objective function with multiple local optima. The dynamics of PSO search has been investigated and numerous variants for improvements have been proposed. This paper reviews the progress of PSO research so far, and the recent achievements for application to large-scale optimization problems.

[1]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[2]  Russell C. Eberhart,et al.  Adaptive particle swarm optimization: detection and response to dynamic systems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[3]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[4]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[5]  Russell C. Eberhart,et al.  Particle swarm with extended memory for multiobjective optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[6]  J. S. Vesterstrom,et al.  Division of labor in particle swarm optimisation , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[7]  Somnuk Phon-Amnuaisuk,et al.  Particle swarm optimization with area extension (AEPSO) , 2007, 2007 IEEE Congress on Evolutionary Computation.

[8]  M. S. Voss Principal component particle swarm optimization (PCPSO) , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[9]  Ying Zhao,et al.  Particle swarm optimization algorithm in signal detection and blind extraction , 2004, 7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings..

[10]  J. Kennedy,et al.  Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[11]  Alcherio Martinoli,et al.  Inspiring and Modeling Multi-Robot Search with Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[12]  Masafumi Hagiwara,et al.  Particle swarm optimization with area of influence: increasing the effectiveness of the swarm , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[13]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer with local search for Large Scale Global Optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[14]  Bo Li,et al.  Parallelizing particle swarm optimization , 2005, PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005..

[15]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[16]  Hitoshi Iba,et al.  Particle swarm optimization with Gaussian mutation , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[17]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[18]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[19]  Ajith Abraham,et al.  Swarm Intelligence in Data Mining , 2009, Swarm Intelligence in Data Mining.

[20]  P. Fourie,et al.  The particle swarm optimization algorithm in size and shape optimization , 2002 .

[21]  Masao Iwamatsu,et al.  Locating All the Global Minima Using Multi-Species Particle Swarm Optimizer: The Inertia Weight and The Constriction Factor Variants , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[22]  M. N. Vrahatis,et al.  Particle swarm optimization method in multiobjective problems , 2002, SAC '02.

[23]  Visakan Kadirkamanathan,et al.  Stability analysis of the particle dynamics in particle swarm optimizer , 2006, IEEE Transactions on Evolutionary Computation.

[24]  Xiaodong Li,et al.  This article has been accepted for inclusion in a future issue. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation , 2022 .

[25]  Andries Petrus Engelbrecht,et al.  Particle swarm optimization with spatially meaningful neighbours , 2008, 2008 IEEE Swarm Intelligence Symposium.

[26]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[27]  B J Fregly,et al.  Parallel global optimization with the particle swarm algorithm , 2004, International journal for numerical methods in engineering.

[28]  Tiago Ferra de Sousa,et al.  Particle Swarm based Data Mining Algorithms for classification tasks , 2004, Parallel Comput..

[29]  Roberto Battiti,et al.  The gregarious particle swarm optimizer (G-PSO) , 2006, GECCO '06.

[30]  Yizhen Zhang,et al.  Particle swarm optimization for unsupervised robotic learning , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[31]  C. Mohan,et al.  Multi-phase generalization of the particle swarm optimization algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[32]  Kevin D. Seppi,et al.  Parallel PSO using MapReduce , 2007, 2007 IEEE Congress on Evolutionary Computation.

[33]  Andries Petrus Engelbrecht,et al.  Measuring exploration/exploitation in particle swarms using swarm diversity , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[34]  Michael O'Neill,et al.  On the scalability of particle swarm optimisation , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[35]  Somnuk Phon-Amnuaisuk,et al.  Effects of Communication Range, Noise and Help Request Signal on Particle Swarm Optimization with Area Extension (AEPSO) , 2007 .

[36]  Saman K. Halgamuge,et al.  Particle Swarm Optimisation for Protein Motif Discovery , 2004, Genetic Programming and Evolvable Machines.

[37]  Peter J. Bentley,et al.  Perceptive particle swarm optimisation: an investigation , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[38]  Somnuk Phon-Amnuaisuk,et al.  Navigating a robotic swarm in an uncharted 2D landscape , 2010, Appl. Soft Comput..

[39]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[40]  Xiao-Feng Xie,et al.  DEPSO: hybrid particle swarm with differential evolution operator , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[41]  Alcherio Martinoli,et al.  Parallel learning in heterogeneous multi-robot swarms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[42]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[43]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[44]  Yang Guangyou,et al.  A Modified Particle Swarm Optimizer Algorithm , 2007, 2007 8th International Conference on Electronic Measurement and Instruments.

[45]  Alcherio Martinoli,et al.  Multi-robot learning with particle swarm optimization , 2006, AAMAS '06.

[46]  Somnuk Phon-Amnuaisuk,et al.  Applying Area Extension PSO in Robotic Swarm , 2010, J. Intell. Robotic Syst..

[47]  Hiroshi Someya Cautious particle swarm , 2008, 2008 IEEE Swarm Intelligence Symposium.

[48]  Yutaka Maeda,et al.  Simultaneous Perturbation Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[49]  Jürgen Branke,et al.  Multiswarms, exclusion, and anti-convergence in dynamic environments , 2006, IEEE Transactions on Evolutionary Computation.

[50]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[51]  Kalyan Veeramachaneni,et al.  Fitness-distance-ratio based particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[52]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[53]  Andries Petrus Engelbrecht,et al.  Scalability of niche PSO , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[54]  De-Bao Sun,et al.  Path planning for mobile robot using the particle swarm optimization with mutation operator , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[55]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[56]  T. Krink,et al.  Particle swarm optimisation with spatial particle extension , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[57]  P. Suganthan Particle swarm optimiser with neighbourhood operator , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[58]  Chunming Yang,et al.  A new particle swarm optimization technique , 2005, 18th International Conference on Systems Engineering (ICSEng'05).

[59]  Adham Atyabi Navigating Agents In Uncertain Environments Using Particle Swarm Optimisation , 2008 .

[60]  T. Krink,et al.  Extending particle swarm optimisers with self-organized criticality , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[61]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[62]  Yoshikazu Fukuyama,et al.  A particle swarm optimization for reactive power and voltage control considering voltage security assessment , 2000 .

[63]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[64]  A. Stacey,et al.  Particle swarm optimization with mutation , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[65]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[66]  A. E. Eiben,et al.  Evolutionary Programming VII , 1998, Lecture Notes in Computer Science.