On the extraction of cellulose nanowhiskers from food by-products and their comparative reinforcing effect on a polyhydroxybutyrate-co-valerate polymer

[1]  J. Lagarón,et al.  Characterization of polyhydroxyalkanoates synthesized from microbial mixed cultures and of their nanobiocomposites with bacterial cellulose nanowhiskers. , 2014, New biotechnology.

[2]  M. Fabra,et al.  A New Method for Developing Industrially Viable Nanocrystalline Cellulose-based Nanocomposites via Melt Compounding , 2014 .

[3]  S. Mussatto Brewer's spent grain: a valuable feedstock for industrial applications. , 2014, Journal of the science of food and agriculture.

[4]  A. French Idealized powder diffraction patterns for cellulose polymorphs , 2014, Cellulose.

[5]  J. Lagarón,et al.  Nanocomposites of ethylene vinyl alcohol copolymer with thermally resistant cellulose nanowhiskers by melt compounding (I): Morphology and thermal properties , 2013 .

[6]  Nathalie Gontard,et al.  Biocomposites from wheat proteins and fibers: Structure/mechanical properties relationships , 2013 .

[7]  Patrícia A. B. Ramos,et al.  Valorization of olive mill residues: Antioxidant and breast cancer antiproliferative activities of hydroxytyrosol-rich extracts derived from olive oil by-products , 2013 .

[8]  Morsyleide de Freitas Rosa,et al.  Extraction and characterization of nanocellulose structures from raw cotton linter. , 2013, Carbohydrate polymers.

[9]  Hongjia Lu,et al.  Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue , 2013 .

[10]  Marta Martínez-Sanz,et al.  Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. , 2012, Biomacromolecules.

[11]  Zhe Zhou,et al.  Simultaneous improvement of mechanical properties and thermal stability of bacterial polyester by cellulose nanocrystals. , 2012, Carbohydrate polymers.

[12]  Héctor A. Ruiz,et al.  A new approach on Brewer's spent grains treatment and potential use as lignocellulosic yeast cells carriers. , 2012, Journal of agricultural and food chemistry.

[13]  J. Villaseñor,et al.  Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. , 2012, Bioresource technology.

[14]  A. Dufresne,et al.  Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers , 2012, Cellulose.

[15]  M. Wolcott,et al.  Effects of Cellulose Nanowhiskers on Mechanical, Dielectric, and Rheological Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Cellulose Nanowhisker Composites , 2012 .

[16]  P. Lu,et al.  Preparation and characterization of cellulose nanocrystals from rice straw. , 2012, Carbohydrate polymers.

[17]  Jean-Guy Berrin,et al.  Effects of grinding processes on enzymatic degradation of wheat straw. , 2012, Bioresource technology.

[18]  Jörg Müssig,et al.  A comparison of the mechanical characteristics of kenaf and lyocell fibre reinforced poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) composites , 2011 .

[19]  M. Rahimi,et al.  Effect of Cellulose Characteristic and Hydrolyze Conditions on Morphology and Size of Nanocrystal Cellulose Extracted from Wheat Straw , 2011 .

[20]  J. Lagarón,et al.  Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers , 2011 .

[21]  J. Lagarón,et al.  Development of electrospun EVOH fibres reinforced with bacterial cellulose nanowhiskers. Part I: Characterization and method optimization , 2011 .

[22]  I. Jiménez,et al.  Characterization of surface‐modified polyalkanoate films for biomedical applications , 2011 .

[23]  A. Dufresne,et al.  Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions , 2011 .

[24]  B. Ramírez-Wong,et al.  Preparation and characterization of durum wheat (Triticum durum) straw cellulose nanofibers by electrospinning. , 2011, Journal of agricultural and food chemistry.

[25]  N. Vigneshwaran,et al.  Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis , 2011 .

[26]  J. Lagarón,et al.  Novel Clay-Based Nanobiocomposites of Biopolyesters with Synergistic Barrier to UV Light, Gas, and Vapour , 2010 .

[27]  J. Lagarón,et al.  On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid , 2010 .

[28]  M. Wolcott,et al.  Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites , 2010 .

[29]  Morsyleide de Freitas Rosa,et al.  Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior , 2010 .

[30]  Unnikrishnan Gopalakrishnapanicker,et al.  Cellulose microfibres produced from banana plant wastes: Isolation and characterization , 2010 .

[31]  Christoph Weder,et al.  Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. , 2009, Biomacromolecules.

[32]  A. Dufresne,et al.  Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. , 2009, Biomacromolecules.

[33]  M. Wolcott,et al.  Study of the Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Cellulose Nanowhisker Composites Prepared by Solution Casting and Melt Processing , 2008 .

[34]  J. Lagarón,et al.  Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers , 2008 .

[35]  H. Yano,et al.  Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. , 2007, Biomacromolecules.

[36]  Enyong Ding,et al.  Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups , 2007 .

[37]  K. Oksman,et al.  Manufacturing process of cellulose whiskers/polylactic acid nanocomposites , 2006 .

[38]  Kristiina Oksman,et al.  Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis , 2006 .

[39]  Dong Il Yoo,et al.  FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. , 2005, Carbohydrate research.

[40]  Alain Dufresne,et al.  Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. , 2005, Biomacromolecules.

[41]  R. Sun,et al.  Characteristics of degraded cellulose obtained from steam-exploded wheat straw. , 2005, Carbohydrate research.

[42]  J. Keckes,et al.  Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose , 2004 .

[43]  R. Sun,et al.  Isolation and characterization of cellulose from sugarcane bagasse , 2004 .

[44]  Masatoshi Iguchi,et al.  Bacterial cellulose—a masterpiece of nature's arts , 2000 .

[45]  Takeshi Okano,et al.  Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose , 1998 .

[46]  Kunihiko Watanabe,et al.  Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture , 1998 .

[47]  M. L. Focarete,et al.  Polymer Blends of Natural Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and a Synthetic Atactic Poly(3-hydroxybutyrate). Characterization and Biodegradation Studies , 1997 .

[48]  Alain Dufresne,et al.  Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior , 1996 .

[49]  D. Delmer,et al.  Cellulose biosynthesis. , 1995, The Plant cell.

[50]  J. Sugiyama,et al.  Combined infrared and electron diffraction study of the polymorphism of native celluloses , 1991 .

[51]  B. Rånby,et al.  Aqueous Colloidal Solutions of Cellulose Micelles. , 1949 .