Representation Dimension and Solomon Zeta Function
暂无分享,去创建一个
[1] W. Rump. The Category of Lattices over a Lattice-Finite Ring , 2005 .
[2] O. Iyama. On Hall Algebras of Hereditary Orders , 2004 .
[3] O. Iyama. Symmetry and duality on n-Gorenstein rings , 2003 .
[4] O. Iyama. The relationship between homological properties and representation theoretic realization of artin algebras , 2003, math/0307392.
[5] O. Iyama. A proof of Solomon's second conjecture on local zeta functions of orders , 2003 .
[6] K. Erdmann,et al. Radical embeddings and representation dimension , 2002, math/0210362.
[7] O. Iyama. Finiteness of representation dimension , 2002 .
[8] Changchang Xi. Representation Dimension and Quasi-hereditary Algebras , 2002 .
[9] W. Rump. Ladder functors with an application to representation-finite Artinian rings. , 2001 .
[10] Changchang Xi. On the Representation Dimension of Finite Dimensional Algebras , 2000 .
[11] O. Schiffmann. The Hall algebra of a cyclic quiver and canonical bases of Fock spaces , 2000 .
[12] J. Neukirch. Algebraic Number Theory , 1999 .
[13] O. Iyama. A generalization of Rejection Lemma of Drozd-Kirichenko , 1998 .
[14] O. Iyama. Some categories of lattices associated to a central idempotent , 1998 .
[15] K. Nishida,et al. Primary Orders of Finite Representation Type , 1997 .
[16] Maurice Auslander,et al. Representation Theory of Artin Algebras: Notation , 1995 .
[17] J. Guo. The hall polynomials of a cyclic serial algebra , 1995 .
[18] B. Z. Huisgen. The Finitistic Dimension Conjectures — A Tale of 3.5 Decades , 1995 .
[19] C. Ringel. The Composition Algebra of a Cyclic Quiver , 1993 .
[20] K. Nishida,et al. Classification of Bass orders. , 1992 .
[21] M. Denert. Solomon's second conjecture: A proof for local hereditary orders in central simple algebras , 1991 .
[22] G. Lusztig. Quivers, perverse sheaves, and quantized enveloping algebras , 1991 .
[23] Steffen König,et al. Global dimension two orders are quasi-hereditary , 1990 .
[24] Y. Yoshino,et al. Cohen-Macaulay modules over Cohen-Macaulay rings , 1990 .
[25] C. Ringel,et al. Quasi-hereditary algebras , 1989 .
[26] C. Ringel,et al. Auslander algebras as quasi-hereditary algebras , 1989 .
[27] C. Ringel,et al. Every Semiprimary Ring is the Endomorphism Ring of a Projective Module Over a Quasi-Hereditary Ring , 1989 .
[28] R. Buchweitz,et al. The Homological Theory of Maximal Cohen-Macaulay Approximations , 1989 .
[29] Leonard L. Scott,et al. Algebraic stratification in representation categories , 1988 .
[30] Ernst Dieterich,et al. The Auslander-Reiten quiver of a simple curve singularity , 1986 .
[31] A. Wiedemann. Classification of the Auslander-Reiten quivers of local Gorenstein orders and a characterization of the simple curve singularities , 1986 .
[32] I. Reiner,et al. New asymptotic formulas for the distribution of left ideals of orders. , 1986 .
[33] Maurice Auslander,et al. Isolated singularities and existence of almost split sequences , 1986 .
[34] I. Reiner,et al. The prime ideal theorem in non-commutative arithmetic , 1982 .
[35] M. Auslander,et al. Almost split sequences in subcategories , 1981 .
[36] M. Auslander,et al. Preprojective modules over artin algebras , 1980 .
[37] I. Reiner,et al. Zeta functions of arithmetic orders and Solomon's conjectures , 1980 .
[38] D. Ray-Chaudhuri. Relations between combinatorics and other parts of mathematics , 1979 .
[39] Louis Solomon,et al. Zeta functions and integral representation theory , 1977 .
[40] K. Roggenkamp. The construction of almost split sequences for integral group rings and orders , 1977 .
[41] R. Fossum,et al. Trivial Extensions of Abelian Categories , 1975 .
[42] J. Drozd,et al. PRIMARY ORDERS WITH A FINITE NUMBER OF INDECOMPOSABLE REPRESENTATIONS , 1973 .
[43] J. Drozd,et al. ON QUASI-BASS ORDERS , 1972 .
[44] K. Roggenkamp,et al. A characterization of orders of finite lattice type , 1972 .
[45] H. Bass. Finitistic dimension and a homological generalization of semi-primary rings , 1960 .
[46] E Cline At Worcester,et al. Journal Fur Die Reine Und Angewandte Mathematik Finite Dimensional Algebras and Highest Weight Categories ') , 2022 .