Satellite DNAs—From Localized to Highly Dispersed Genome Components

According to the established classical view, satellite DNAs are defined as abundant non-coding DNA sequences repeated in tandem that build long arrays located in heterochromatin. Advances in sequencing methodologies and development of specialized bioinformatics tools enabled defining a collection of all repetitive DNAs and satellite DNAs in a genome, the repeatome and the satellitome, respectively, as well as their reliable annotation on sequenced genomes. Supported by various non-model species included in recent studies, the patterns of satellite DNAs and satellitomes as a whole showed much more diversity and complexity than initially thought. Differences are not only in number and abundance of satellite DNAs but also in their distribution across the genome, array length, interspersion patterns, association with transposable elements, localization in heterochromatin and/or in euchromatin. In this review, we compare characteristic organizational features of satellite DNAs and satellitomes across different animal and plant species in order to summarize organizational forms and evolutionary processes that may lead to satellitomes’ diversity and revisit some basic notions regarding repetitive DNA landscapes in genomes.

[1]  C. Buddenhagen,et al.  Investigating the diversification of holocentromeric satDNA Tyba in Rhynchospora (Cyperaceae). , 2023, Annals of botany.

[2]  S. Louzada,et al.  Human Satellite 1A analysis provides evidence of pericentromeric transcription , 2023, BMC Biology.

[3]  Francisco J. Ruiz-Ruano,et al.  Tandem Repeat DNA Provides Many Cytological Markers for Hybrid Zone Analysis in Two Subspecies of the Grasshopper Chorthippus parallelus , 2023, Genes.

[4]  D. C. Cabral-de-Mello,et al.  The Satellite DNAs Populating the Genome of Trigona hyalinata and the Sharing of a Highly Abundant satDNA in Trigona Genus , 2023, Genes.

[5]  F. Panzera,et al.  Making the Genome Huge: The Case of Triatoma delpontei, a Triatominae Species with More than 50% of Its Genome Full of Satellite DNA , 2023, Genes.

[6]  D. C. Cabral-de-Mello,et al.  Evolution of satDNAs on holocentric chromosomes: insights from hemipteran insects of the genus Mahanarva , 2023, Chromosome Research.

[7]  G. Kuhn,et al.  In Silico Identification and Characterization of Satellite DNAs in 23 Drosophila Species from the Montium Group , 2023, Genes.

[8]  D. C. Cabral-de-Mello,et al.  Satellitome Analysis on Talpa aquitania Genome and Inferences about the satDNAs Evolution on Some Talpidae , 2022, Genes.

[9]  F. Foresti,et al.  The Satellite DNA Catalogues of Two Serrasalmidae (Teleostei, Characiformes): Conservation of General satDNA Features over 30 Million Years , 2022, Genes.

[10]  P. Castagnone-Sereno,et al.  Satellitome analyses in nematodes illuminate complex species history and show conserved features in satellite DNAs , 2022, BMC Biology.

[11]  Michelle Louise Zattera,et al.  Transposable Elements as a Source of Novel Repetitive DNA in the Eukaryote Genome , 2022, Cells.

[12]  F. Marec,et al.  A step forward in the genome characterization of the sugarcane borer, Diatraea saccharalis: karyotype analysis, sex chromosome system and repetitive DNAs through a cytogenomic approach , 2022, Chromosoma.

[13]  E. Badaeva,et al.  Aegilops crassa Boiss. repeatome characterized using low-coverage NGS as a source of new FISH markers: Application in phylogenetic studies of the Triticeae , 2022, Frontiers in Plant Science.

[14]  I. Kirov,et al.  A Pipeline NanoTRF as a New Tool for De Novo Satellite DNA Identification in the Raw Nanopore Sequencing Reads of Plant Genomes , 2022, Plants.

[15]  K. Mayer,et al.  Repeat-based holocentromeres influence genome architecture and karyotype evolution , 2022, Cell.

[16]  I. Feliciello,et al.  Satellite DNAs in Health and Disease , 2022, Genes.

[17]  C. Oliveira,et al.  Revealing the Satellite DNA History in Psalidodon and Astyanax Characid Fish by Comparative Satellitomics , 2022, Frontiers in Genetics.

[18]  Joanna L. Kelley,et al.  Repetitive elements in the era of biodiversity genomics: insights from 600+ insect genomes , 2022, bioRxiv.

[19]  P. Lorite,et al.  Satellitome of the Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), the Most Diverse Among Insects , 2022, Frontiers in Ecology and Evolution.

[20]  L. G. de Lima,et al.  In-Depth Satellitome Analyses of 37 Drosophila Species Illuminate Repetitive DNA Evolution in the Drosophila Genus , 2022, Genome biology and evolution.

[21]  Mozes P. K. Blom,et al.  Satellite DNA evolution in Corvoidea inferred from short and long reads , 2022, Molecular ecology.

[22]  N. L. Bolsheva,et al.  Repeatome Analyses and Satellite DNA Chromosome Patterns in Deschampsia sukatschewii, D. cespitosa, and D. antarctica (Poaceae) , 2022, Genes.

[23]  O. Podgornaya Nuclear organization by satellite DNA, SAF-A/hnRNPU and matrix attachment regions. , 2022, Seminars in cell & developmental biology.

[24]  Majida Atta Muhammad,et al.  Satellitome Analysis and Transposable Elements Comparison in Geographically Distant Populations of Spodoptera frugiperda , 2022, Life.

[25]  S. Henikoff,et al.  The genetics and epigenetics of satellite centromeres , 2022, Genome research.

[26]  C. M. Díez,et al.  The Singular Evolution of Olea Genome Structure , 2022, Frontiers in Plant Science.

[27]  P. Dimitri,et al.  Constitutive Heterochromatin in Eukaryotic Genomes: A Mine of Transposable Elements , 2022, Cells.

[28]  M. Garrido-Ramos,et al.  Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution , 2022, BMC biology.

[29]  Marcelo de Bello Cioffi,et al.  Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes) , 2022, Chromosoma.

[30]  L. Wallrath,et al.  Shining Light on the Dark Side of the Genome , 2022, Cells.

[31]  OUP accepted manuscript , 2022, Genome Biology and Evolution.

[32]  A. Ferretti,et al.  The extensive amplification of heterochromatin in Melipona bees revealed by high throughput genomic and chromosomal analysis , 2021, Chromosoma.

[33]  M. Plohl,et al.  Classification Problems of Repetitive DNA Sequences , 2021, DNA.

[34]  D. A. Martí,et al.  Genomic Differences Between the Sexes in a Fish Species Seen Through Satellite DNAs , 2021, Frontiers in Genetics.

[35]  E. Ershova,et al.  The Role of Human Satellite III (1q12) Copy Number Variation in the Adaptive Response during Aging, Stress, and Pathology: A Pendulum Model , 2021, Genes.

[36]  D. C. Cabral-de-Mello,et al.  Out of patterns, the euchromatic B chromosome of the grasshopper Abracris flavolineata is not enriched in high-copy repeats , 2021, Heredity.

[37]  Worapong Singchat,et al.  Impact of Repetitive DNA Elements on Snake Genome Biology and Evolution , 2021, Cells.

[38]  M. Plohl,et al.  Satellitome Analysis of the Pacific Oyster Crassostrea gigas Reveals New Pattern of Satellite DNA Organization, Highly Scattered across the Genome , 2021, International journal of molecular sciences.

[39]  F. Panzera,et al.  Satellitome Analysis of Rhodnius prolixus, One of the Main Chagas Disease Vector Species , 2021, International journal of molecular sciences.

[40]  Aaron M. Streets,et al.  The complete sequence of a human genome , 2021, bioRxiv.

[41]  J. Macas,et al.  Complex sequence organization of heterochromatin in the holocentric plant Cuscuta europaea elucidated by the computational analysis of nanopore reads , 2021, Computational and structural biotechnology journal.

[42]  S. Henikoff,et al.  Sequence, Chromatin and Evolution of Satellite DNA , 2021, International journal of molecular sciences.

[43]  F. R. Santos,et al.  Identification and characterization of repetitive DNA in the genus Didelphis Linnaeus, 1758 (Didelphimorphia, Didelphidae) and the use of satellite DNAs as phylogenetic markers , 2021, Genetics and molecular biology.

[44]  F. Marec,et al.  The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths , 2021, Frontiers in Genetics.

[45]  T. Schmidt,et al.  Comparative Repeat Profiling of Two Closely Related Conifers (Larix decidua and Larix kaempferi) Reveals High Genome Similarity With Only Few Fast-Evolving Satellite DNAs , 2021, bioRxiv.

[46]  P. Castagnone-Sereno,et al.  The Centromere Histone Is Conserved and Associated with Tandem Repeats Sharing a Conserved 19-bp Box in the Holocentromere of Meloidogyne Nematodes , 2021, Molecular biology and evolution.

[47]  M. L. C. Vieira,et al.  Large vs small genomes in Passiflora: the influence of the mobilome and the satellitome , 2020, Planta.

[48]  M. Plohl,et al.  Exploring Satellite DNAs: Specificities of Bivalve Mollusks Genomes. , 2021, Progress in molecular and subcellular biology.

[49]  M. Garrido-Ramos The Genomics of Plant Satellite DNA. , 2021, Progress in molecular and subcellular biology.

[50]  G. Dias,et al.  Structure, Organization, and Evolution of Satellite DNAs: Insights from the Drosophila repleta and D. virilis Species Groups. , 2021, Progress in molecular and subcellular biology.

[51]  Satellite DNAs in Physiology and Evolution , 2021 .

[52]  Carola Greve,et al.  The Pontastacus leptodactylus (Astacidae) Repeatome Provides Insight Into Genome Evolution and Reveals Remarkable Diversity of Satellite DNA , 2021, Frontiers in Genetics.

[53]  E. Šatović Tools and databases for solving problems in detection and identification of repetitive DNA sequences , 2020, Periodicum Biologorum.

[54]  S. Malaivijitnond,et al.  Dark Matter of Primate Genomes: Satellite DNA Repeats and Their Evolutionary Dynamics , 2020, Cells.

[55]  G. Kuhn,et al.  Identification and characterization of satellite DNAs in two-toed sloths of the genus Choloepus (Megalonychidae, Xenarthra) , 2020, Scientific Reports.

[56]  R. Kalendar,et al.  The major satellite DNA families of the diploid Chenopodium album aggregate species: Arguments for and against the “library hypothesis” , 2020, PloS one.

[57]  Pavel Neumann,et al.  Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2 , 2020, Nature Protocols.

[58]  I. Feliciello,et al.  Evolutionary History of Alpha Satellite DNA Repeats Dispersed within Human Genome Euchromatin , 2020, Genome biology and evolution.

[59]  A. Archibald,et al.  A chromosome-level genome assembly for the Pacific oyster Crassostrea gigas , 2020, bioRxiv.

[60]  C. Feschotte,et al.  A Field Guide to Eukaryotic Transposable Elements. , 2020, Annual review of genetics.

[61]  D. C. Cabral-de-Mello,et al.  Analysis of Holhymenia histrio genome provides insight into the satDNA evolution in an insect with holocentric chromosomes , 2020, Chromosome Research.

[62]  M. Plohl,et al.  Satellite DNA-like repeats are dispersed throughout the genome of the Pacific oyster Crassostrea gigas carried by Helentron non-autonomous mobile elements , 2020, Scientific Reports.

[63]  Alexander Suh,et al.  Comparative analysis of morabine grasshopper genomes reveals highly abundant transposable elements and rapidly proliferating satellite DNA repeats , 2020, BMC Biology.

[64]  P. Lorite,et al.  Satellitome Analysis in the Ladybird Beetle Hippodamia variegata (Coleoptera, Coccinellidae) , 2020, Genes.

[65]  H. Schielzeth,et al.  Comparative Analysis of Genomic Repeat Content in Gomphocerine Grasshoppers Reveals Expansion of Satellite DNA and Helitrons in Species with Unusually Large Genomes , 2020, Genome biology and evolution.

[66]  A. Ferretti,et al.  High dynamism for neo-sex chromosomes: satellite DNAs reveal complex evolution in a grasshopper , 2020, Heredity.

[67]  M. Plohl,et al.  Sequence Composition Underlying Centromeric and Heterochromatic Genome Compartments of the Pacific Oyster Crassostrea gigas , 2020, Genes.

[68]  G. Dias,et al.  Characterization of Satellite DNAs in Squirrel Monkeys genus Saimiri (Cebidae, Platyrrhini) , 2020, Scientific Reports.

[69]  A. A. Kotov,et al.  Functional Significance of Satellite DNAs: Insights From Drosophila , 2020, Frontiers in Cell and Developmental Biology.

[70]  C. Haddad,et al.  Great Abundance of Satellite DNA in Proceratophrys (Anura, Odontophrynidae) Revealed by Genome Sequencing , 2020, Cytogenetic and Genome Research.

[71]  Hojun Song,et al.  Eight Million Years of Satellite DNA Evolution in Grasshoppers of the Genus Schistocerca Illuminate the Ins and Outs of the Library Hypothesis , 2020, Genome biology and evolution.

[72]  S. Henikoff,et al.  What makes a centromere? , 2020, Experimental cell research.

[73]  Doreen Ware,et al.  Gapless assembly of maize chromosomes using long-read technologies , 2020, Genome Biology.

[74]  S. Louzada,et al.  Decoding the Role of Satellite DNA in Genome Architecture and Plasticity—An Evolutionary and Clinical Affair , 2020, Genes.

[75]  A. Paço,et al.  Conversion of DNA Sequences: From a Transposable Element to a Tandem Repeat or to a Gene , 2019, Genes.

[76]  Xiao-Tong Wang,et al.  Nanopore Sequencing and De Novo Assembly of a Black-Shelled Pacific Oyster (Crassostrea gigas) Genome , 2019, Front. Genet..

[77]  J. Macas,et al.  Characterization of repeat arrays in ultra‐long nanopore reads reveals frequent origin of satellite DNA from retrotransposon‐derived tandem repeats , 2019, The Plant journal : for cell and molecular biology.

[78]  F. Foresti,et al.  Satellite DNA content of B chromosomes in the characid fish Characidium gomesi supports their origin from sex chromosomes , 2019, Molecular Genetics and Genomics.

[79]  Chongming Wang,et al.  Chromosomal-level assembly of the blood clam, Scapharca (Anadara) broughtonii, using long sequence reads and Hi-C , 2019, GigaScience.

[80]  J. S. Heslop-Harrison,et al.  The repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads , 2019, BMC Plant Biology.

[81]  Karen H. Miga Centromeric Satellite DNAs: Hidden Sequence Variation in the Human Population , 2019, Genes.

[82]  F. Micheli,et al.  Correction to: low coverage sequencing for repetitive DNA analysis in Passiflora edulis Sims: citogenomic characterization of transposable elements and satellite DNA , 2019, BMC Genomics.

[83]  F. Foresti,et al.  Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of satellite sequences on the heteromorphic sex chromosome , 2019, Scientific Reports.

[84]  F. Micheli,et al.  Low coverage sequencing for repetitive DNA analysis in Passiflora edulis Sims: citogenomic characterization of transposable elements and satellite DNA , 2019, BMC Genomics.

[85]  R. O’Neill,et al.  Centromere Repeats: Hidden Gems of the Genome , 2019, Genes.

[86]  R. Kalendar,et al.  Natural History of a Satellite DNA Family: From the Ancestral Genome Component to Species-Specific Sequences, Concerted and Non-Concerted Evolution , 2019, International journal of molecular sciences.

[87]  R. O’Neill,et al.  A centromere satellite concomitant with extensive karyotypic diversity across the Peromyscus genus defies predictions of molecular drive , 2019, Chromosome Research.

[88]  M. Garrido-Ramos,et al.  Characterization of the satellitome in lower vascular plants: the case of the endangered fern Vandenboschia speciosa , 2018, Annals of botany.

[89]  A. Ferretti,et al.  Satellite DNAs Unveil Clues about the Ancestry and Composition of B Chromosomes in Three Grasshopper Species , 2018, Genes.

[90]  Claude Thermes,et al.  The Third Revolution in Sequencing Technology. , 2018, Trends in genetics : TIG.

[91]  Alexander Suh,et al.  How complete are “complete” genome assemblies?—An avian perspective , 2018, Molecular ecology resources.

[92]  M. Plohl,et al.  Distribution of DTHS3 satellite DNA across 12 bivalve species , 2018, Journal of Genetics.

[93]  F. Panzera,et al.  Comparative Analysis of Repetitive DNA between the Main Vectors of Chagas Disease: Triatoma infestans and Rhodnius prolixus , 2018, International journal of molecular sciences.

[94]  J. Macas,et al.  Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing , 2018, Scientific Reports.

[95]  Fritz J Sedlazeck,et al.  Piercing the dark matter: bioinformatics of long-range sequencing and mapping , 2018, Nature Reviews Genetics.

[96]  A. Clark,et al.  Satellite DNA evolution: old ideas, new approaches. , 2018, Current opinion in genetics & development.

[97]  Francisco J. Ruiz-Ruano,et al.  High-throughput analysis of satellite DNA in the grasshopper Pyrgomorpha conica reveals abundance of homologous and heterologous higher-order repeats , 2018, Chromosoma.

[98]  H. Madhani,et al.  Ten principles of heterochromatin formation and function , 2017, Nature Reviews Molecular Cell Biology.

[99]  B. Lemos,et al.  Satellite DNAs are conserved and differentially transcribed among Gryllus cricket species , 2017, DNA research : an international journal for rapid publication of reports on genes and genomes.

[100]  Zhanjiang Liu,et al.  Comparative genome analysis of 52 fish species suggests differential associations of repetitive elements with their living aquatic environments , 2017, BMC Genomics.

[101]  D. Barbash,et al.  Double insertion of transposable elements provides a substrate for the evolution of satellite DNA , 2017, bioRxiv.

[102]  D. Ferreira,et al.  FA-SAT Is an Old Satellite DNA Frozen in Several Bilateria Genomes , 2017, Genome biology and evolution.

[103]  C. Oliveira,et al.  High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus Astyanax , 2017, Scientific Reports.

[104]  M. Garrido-Ramos Satellite DNA: An Evolving Topic , 2017, Genes.

[105]  C. Oliveira,et al.  A Glimpse into the Satellite DNA Library in Characidae Fish (Teleostei, Characiformes) , 2017, Front. Genet..

[106]  G. Dias,et al.  High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis , 2017, Scientific Reports.

[107]  Á. Cuadrado,et al.  Comparative repeatome analysis on Triatoma infestans Andean and Non-Andean lineages, main vector of Chagas disease , 2017, PloS one.

[108]  J. Macas,et al.  TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads , 2017, Nucleic acids research.

[109]  Francisco J. Ruiz-Ruano,et al.  Satellite DNA content illuminates the ancestry of a supernumerary (B) chromosome , 2017, Chromosoma.

[110]  D. Bertioli,et al.  Evolutionary dynamics of an at-rich satellite DNA and its contribution to karyotype differentiation in wild diploid Arachis species , 2017, Molecular Genetics and Genomics.

[111]  M. Plohl,et al.  Adjacent sequences disclose potential for intra-genomic dispersal of satellite DNA repeats and suggest a complex network with transposable elements , 2016, BMC Genomics.

[112]  Francisco J. Ruiz-Ruano,et al.  High-throughput analysis of the satellitome illuminates satellite DNA evolution , 2016, Scientific Reports.

[113]  J. Macas,et al.  Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris) , 2016, BMC Plant Biology.

[114]  Andreas Gogol-Döring,et al.  A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes , 2016, Nature Communications.

[115]  J. Macas,et al.  In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae , 2015, PloS one.

[116]  J. S. Heslop-Harrison,et al.  Repetitive DNA in eukaryotic genomes , 2015, Chromosome Research.

[117]  V. Schubert,et al.  Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin , 2015, Proceedings of the National Academy of Sciences.

[118]  M. Plohl,et al.  Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms , 2015, DNA research : an international journal for rapid publication of reports on genes and genomes.

[119]  G. Dias,et al.  Helitrons shaping the genomic architecture of Drosophila: enrichment of DINE-TR1 in α- and β-heterochromatin, satellite DNA emergence, and piRNA expression , 2015, Chromosome Research.

[120]  M. A. Biscotti,et al.  Transcription of tandemly repetitive DNA: functional roles , 2015, Chromosome Research.

[121]  I. Feliciello,et al.  Correction: Satellite DNA Modulates Gene Expression in the Beetle Tribolium castaneum after Heat Stress , 2015, PLoS genetics.

[122]  M. Plohl,et al.  Structural and functional liaisons between transposable elements and satellite DNAs , 2015, Chromosome Research.

[123]  D. Ferreira,et al.  Satellite non-coding RNAs: the emerging players in cells, cellular pathways and cancer , 2015, Chromosome Research.

[124]  I. Feliciello,et al.  Satellite DNA Modulates Gene Expression in the Beetle Tribolium castaneum after Heat Stress , 2015, PLoS genetics.

[125]  M. A. Biscotti,et al.  A novel satellite DNA isolated in Pecten jacobaeus shows high sequence similarity among molluscs , 2015, Molecular Genetics and Genomics.

[126]  A. Luchetti terMITEs: miniature inverted-repeat transposable elements (MITEs) in the termite genome (Blattodea: Termitoidae) , 2015, Molecular Genetics and Genomics.

[127]  Ellen J. Pritham,et al.  Helitrons, the Eukaryotic Rolling-circle Transposable Elements , 2015, Microbiology spectrum.

[128]  Nicolas Pollet,et al.  Insights on genome size evolution from a miniature inverted repeat transposon driving a satellite DNA. , 2014, Molecular phylogenetics and evolution.

[129]  A. Larracuente The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive , 2014, BMC Evolutionary Biology.

[130]  M. Garrido-Ramos,et al.  Satellite-DNA diversification and the evolution of major lineages in Cardueae (Carduoideae Asteraceae) , 2014, Journal of Plant Research.

[131]  Young Bun Kim,et al.  Divergence of Drosophila melanogaster repeatomes in response to a sharp microclimate contrast in Evolution Canyon, Israel , 2014, Proceedings of the National Academy of Sciences.

[132]  A. Ruíz,et al.  Tetris Is a Foldback Transposon that Provided the Building Blocks for an Emerging Satellite DNA of Drosophila virilis , 2014, Genome biology and evolution.

[133]  J. Bennetzen,et al.  The contributions of transposable elements to the structure, function, and evolution of plant genomes. , 2014, Annual review of plant biology.

[134]  M. Plohl,et al.  Centromere identity from the DNA point of view , 2014, Chromosoma.

[135]  L. Fanti,et al.  Transposons, environmental changes, and heritable induced phenotypic variability , 2014, Chromosoma.

[136]  M. Plohl,et al.  Tandem Repeat-Containing MITEs in the Clam Donax trunculus , 2013, Genome biology and evolution.

[137]  Petr Novák,et al.  RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads , 2013, Bioinform..

[138]  Thomas K. Wolfgruber,et al.  Tandem repeats derived from centromeric retrotransposons , 2013, BMC Genomics.

[139]  I. Feliciello,et al.  Satellite DNA-Like Elements Associated With Genes Within Euchromatin of the Beetle Tribolium castaneum , 2012, G3: Genes | Genomes | Genetics.

[140]  G. Kuhn,et al.  The 1.688 repetitive DNA of Drosophila: concerted evolution at different genomic scales and association with genes. , 2012, Molecular biology and evolution.

[141]  M. Plohl,et al.  Satellite DNA evolution. , 2012, Genome dynamics.

[142]  M. Garrido-Ramos,et al.  The repetitive DNA content of eukaryotic genomes. , 2012, Genome dynamics.

[143]  I. Feliciello,et al.  Structure and population dynamics of the major satellite DNA in the red flour beetle Tribolium castaneum , 2011, Genetica.

[144]  A. Iafrate,et al.  Aberrant Overexpression of Satellite Repeats in Pancreatic and Other Epithelial Cancers , 2011, Science.

[145]  G. Kuhn,et al.  Characterization and Genomic Organization of PERI, a Repetitive DNA in the Drosophila buzzatii Cluster Related to DINE-1 Transposable Elements and Highly Abundant in the Sex Chromosomes , 2010, Cytogenetic and Genome Research.

[146]  A. Ricci,et al.  Long-term conservation vs high sequence divergence: the case of an extraordinarily old satellite DNA in bivalve mollusks , 2010, Heredity.

[147]  R. Matyášek,et al.  Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. , 2010, The New phytologist.

[148]  D. Segal,et al.  Extrachromosomal circles of satellite repeats and 5S ribosomal DNA in human cells , 2010, Mobile DNA.

[149]  Pavel Neumann,et al.  Hypervariable 3' UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. , 2009, Gene.

[150]  H. Guedes-Pinto,et al.  Satellite DNA in the Karyotype Evolution of Domestic Animals – Clinical Considerations , 2009, Cytogenetic and Genome Research.

[151]  D. Barbash,et al.  Species-Specific Heterochromatin Prevents Mitotic Chromosome Segregation to Cause Hybrid Lethality in Drosophila , 2009, PLoS biology.

[152]  A. Leitão,et al.  Chromosomal organization of simple sequence repeats in the Pacific oyster (Crassostrea gigas): (GGAT)4, (GT)7 and (TA)10 chromosome patterns , 2008, Journal of Genetics.

[153]  M. A. Biscotti,et al.  Molecular and cytogenetic characterization of repetitive DNA in the Antarctic polyplacophoran Nuttallochiton mirandus , 2008, Chromosome Research.

[154]  Miroslav Plohl,et al.  Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. , 2008, Gene.

[155]  M. Toscani,et al.  Heterochromatin heteromorphism in Holhymenia rubiginosa (Heteroptera: Coreidae) , 2008 .

[156]  D. Barbash,et al.  Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes , 2008, Genome Biology.

[157]  Pavel Neumann,et al.  Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula , 2007, BMC Genomics.

[158]  J. Jurka,et al.  Helitrons on a roll: eukaryotic rolling-circle transposons. , 2007, Trends in genetics : TIG.

[159]  M. Plohl,et al.  Satellite DNA junctions identify the potential origin of new repetitive elements in the beetle Tribolium madens. , 2007, Gene.

[160]  Teresa Palomeque,et al.  Detection of a mariner-like element and a miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of the genus Messor and their possible involvement for satellite DNA evolution. , 2006, Gene.

[161]  M. Plohl,et al.  Preliminary phylogeny of Tribolium beetles (Coleoptera: Tenebrionidae) resolved by combined analysis of mitochondrial genes , 2006 .

[162]  B. Mantovani,et al.  Non-concerted evolution of the RET76 satellite DNA family in Reticulitermes taxa (Insecta, Isoptera) , 2006, Genetica.

[163]  Jiming Jiang,et al.  Sobo, a Recently Amplified Satellite Repeat of Potato, and Its Implications for the Origin of Tandemly Repeated Sequences , 2005, Genetics.

[164]  I. Cross,et al.  Molecular and cytogenetic characterization of Crassostrea angulata chromosomes , 2005 .

[165]  G. Dover DNA turnover and the molecular clock , 2005, Journal of Molecular Evolution.

[166]  A. Tinaut,et al.  Evolutionary dynamics of satellite DNA in species of the Genus Formica (Hymenoptera, Formicidae). , 2004, Gene.

[167]  Sonja Durajlija Zinic,et al.  A Novel Interspersed Type of Organization of Satellite DNAs in Tribolium Madens Heterochromatin , 2004, Chromosome Research.

[168]  A. Luchetti,et al.  Polymerase chain reaction amplification of the Bag320 satellite family reveals the ancestral library and past gene conversion events in Bacillus rossius (Insecta Phasmatodea). , 2003, Gene.

[169]  P. Gaffney,et al.  Pearl, a Novel Family of Putative Transposable Elements in Bivalve Mollusks , 2003, Journal of Molecular Evolution.

[170]  M. Plohl,et al.  Variation in satellite DNA profiles—causes and effects , 2002, The EMBO journal.

[171]  M. Plohl,et al.  Sequence of PRAT Satellite DNA ``Frozen'' in Some Coleopteran Species , 2002, Journal of Molecular Evolution.

[172]  C. Slamovits,et al.  Recurrent amplifications and deletions of satellite DNA accompanied chromosomal diversification in South American tuco-tucos (genus Ctenomys, Rodentia: Octodontidae): a phylogenetic approach. , 2001, Molecular biology and evolution.

[173]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[174]  J. Lenstra,et al.  Mutation and Recombination in Cattle Satellite DNA: A Feedback Model for the Evolution of Satellite DNA Repeats , 2001, Journal of Molecular Evolution.

[175]  M. Garrido-Ramos,et al.  Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons. , 2001, Molecular biology and evolution.

[176]  T. Langdon,et al.  Retrotransposon evolution in diverse plant genomes. , 2000, Genetics.

[177]  M. Garrido-Ramos,et al.  Evolution of centromeric satellite DNA and its use in phylogenetic studies of the Sparidae family (Pisces, Perciformes). , 1999, Molecular phylogenetics and evolution.

[178]  J. Werren,et al.  Evolution of Tandemly Repeated Sequences: What Happens at the End of an Array? , 1999, Journal of Molecular Evolution.

[179]  M. Plohl,et al.  Evolution of satellite DNAs from the genus Palorus--experimental evidence for the "library" hypothesis. , 1998, Molecular biology and evolution.

[180]  J. S. Heslop-Harrison,et al.  Genomes, genes and junk: the large-scale organization of plant chromosomes , 1998 .

[181]  J. Elder,et al.  Concerted Evolution of Repetitive DNA Sequences in Eukaryotes , 1995, The Quarterly Review of Biology.

[182]  Wolfgang Stephan,et al.  The evolutionary dynamics of repetitive DNA in eukaryotes , 1994, Nature.

[183]  L. Bachmann,et al.  Gradual evolution of a specific satellite DNA family in Drosophila ambigua, D. tristis, and D. obscura. , 1993, Molecular biology and evolution.

[184]  C. Tyler-Smith,et al.  Dodeca satellite: a conserved G+C-rich satellite from the centromeric heterochromatin of Drosophila melanogaster. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[185]  F. Jackson,et al.  A superfamily of Drosophila satellite related (SR) DNA repeats restricted to the X chromosome euchromatin. , 1992, Nucleic acids research.

[186]  W. Stephan Recombination and the evolution of satellite DNA. , 1986, Genetical research.

[187]  G. Dover Molecular drive in multigene families: How biological novelties arise, spread and are assimilated , 1986 .

[188]  T. Strachan,et al.  Transition stages of molecular drive in multiple‐copy DNA families in Drosophila , 1985, The EMBO journal.

[189]  T. Strachan,et al.  Molecular drive. , 2002, Science.

[190]  G. Dover,et al.  Molecular drive: a cohesive mode of species evolution , 1982, Nature.

[191]  M. Singer Highly repeated sequences in mammalian genomes. , 1982, International review of cytology.

[192]  W. Salser,et al.  Nucleotide sequences of HS-α satellite DNA from kangaroo rat dipodomys ordii and characterization of similar sequences in other rodents , 1977, Cell.

[193]  G. P. Smith,et al.  Evolution of repeated DNA sequences by unequal crossover. , 1976, Science.

[194]  S. Kit,et al.  Equilibrium sedimentation in density gradients of DNA preparations from animal tissues. , 1961, Journal of molecular biology.

[195]  N. Sueoka Variation and heterogeneity of base composition of deoxyribonucleic acids: A compilation of old and new data , 1961 .