Item response theory modeling with nonignorable missing data
暂无分享,去创建一个
[1] L. Wasserman,et al. Computing Bayes Factors Using a Generalization of the Savage-Dickey Density Ratio , 1995 .
[2] Appropriateness of IRT observed score equating , 1996 .
[3] R. Little. Models for Nonresponse in Sample Surveys , 1982 .
[4] R. Hambleton,et al. Item Response Theory: Principles and Applications , 1984 .
[5] L. Shepard,et al. Methods for Identifying Biased Test Items , 1994 .
[6] Irini Moustaki,et al. A Latent Variable Model for Ordinal Variables , 2000 .
[7] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[8] P. Boeck,et al. Explanatory item response models : a generalized linear and nonlinear approach , 2004 .
[9] A. Béguin,et al. MCMC estimation of multidimensional IRT models , 1998 .
[10] N. D. Verhelst,et al. Extensions of the partial credit model , 1989 .
[11] G. Masters. The Partial Credit Model , 2016 .
[12] Cornelis A.W. Glas,et al. Modification indices for the 2-PL and the nominal response model , 1999 .
[13] Robert J. Mislevy. Bayes modal estimation in item response models , 1986 .
[14] E. Muraki,et al. Full-Information Item Factor Analysis , 1988 .
[15] M. R. Novick,et al. Statistical Theories of Mental Test Scores. , 1971 .
[16] Klaas Sijtsma,et al. Methodology Review: Evaluating Person Fit , 2001 .
[17] Nan M. Laird,et al. Regression Analysis for Categorical Variables with Outcome Subject to Nonignorable Nonresponse , 1988 .
[18] Terry Ackerman,et al. Graphical Representation of Multidimensional Item Response Theory Analyses , 1996 .
[19] Morton B. Brown,et al. Log-linear models for a binary response with nonignorable nonresponse , 1997 .
[20] G. J. Mellenbergh,et al. A Unidimensional Latent Trait Model for Continuous Item Responses. , 1994, Multivariate behavioral research.
[21] C. H. Coombs,et al. Mathematical psychology : an elementary introduction , 1970 .
[22] J. Dickey. The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location Parameters , 1971 .
[23] E. Muraki. A GENERALIZED PARTIAL CREDIT MODEL: APPLICATION OF AN EM ALGORITHM , 1992 .
[24] T. Louis. Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .
[25] T. Cook,et al. Quasi-experimentation: Design & analysis issues for field settings , 1979 .
[26] Mark R. Conaway,et al. The Analysis of Repeated Categorical Measurements Subject to Nonignorable Nonresponse , 1992 .
[27] Eric T. Bradlow,et al. A hierarchical latent variable model for ordinal data from a customer satisfaction survey with no answer responses , 1999 .
[28] Francis Tuerlinckx,et al. A Hierarchical IRT Model for Criterion-Referenced Measurement , 2000 .
[29] Christine E. DeMars. Incomplete Data and Item Parameter Estimates Under JMLE and MML Estimation , 2002 .
[30] Cees A. W. Glas,et al. Statistical tests for differential test functioning in Rasch's model for speed tests , 2001 .
[31] J. Aitchison,et al. Maximum-Likelihood Estimation of Parameters Subject to Restraints , 1958 .
[32] Frederic M. Lord,et al. Unbiased estimators of ability parameters, of their variance, and of their parallel-forms reliability , 1983 .
[33] Steven E. Rigdon,et al. Parameter estimation in latent trait models , 1983 .
[34] Klaas Sijtsma,et al. Investigation and Treatment of Missing Item Scores in Test and Questionnaire Data , 2003, Multivariate behavioral research.
[35] K Sijtsma,et al. Influence of Imputation and EM Methods on Factor Analysis when Item Nonresponse in Questionnaire Data is Nonignorable , 2000, Multivariate behavioral research.
[36] Raymond J. Adams,et al. Multilevel Item Response Models: An Approach to Errors in Variables Regression , 1997 .
[37] Erling B. Andersen,et al. Conditional Inference and Models for Measuring , 1974 .
[38] H. Swaminathan,et al. Detecting Differential Item Functioning Using Logistic Regression Procedures , 1990 .
[39] Ivo W. Molenaar,et al. Estimation of Item Parameters , 1995 .
[40] C. Glas. Testing the generalized partial credit model , 1996 .
[41] R. Mislevy. Estimating latent distributions , 1984 .
[42] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[43] D. Rubin. INFERENCE AND MISSING DATA , 1975 .
[44] Mark Huisman,et al. Item Nonresponse: Occurence, Causes, and Imputation of Missing Answers to Test Items , 1999 .
[45] Jean-Paul Fox,et al. Modelling response error in school effectiveness research , 2004 .
[46] J. Heckman. Sample selection bias as a specification error , 1979 .
[47] Brian W. Junker,et al. Applications and Extensions of MCMC in IRT: Multiple Item Types, Missing Data, and Rated Responses , 1999 .
[48] J. Schafer,et al. Missing data: our view of the state of the art. , 2002, Psychological methods.
[49] Modeling variability in item parameters in educational measurement , 2005 .
[50] Ivo W. Molenaar,et al. Some improved diagnostics for failure of the Rasch model , 1983 .
[51] Joseph L Schafer,et al. Analysis of Incomplete Multivariate Data , 1997 .
[52] Roderick P. McDonald,et al. Normal-Ogive Multidimensional Model , 1997 .
[53] Cornelis A.W. Glas,et al. A Comparison of Item-Fit Statistics for the Three-Parameter Logistic Model , 2003 .
[54] S. Chib. Marginal Likelihood from the Gibbs Output , 1995 .
[55] Benjamin D. Wright,et al. A Procedure for Sample-Free Item Analysis , 1969 .
[56] Nancy L. Allen,et al. Measuring the Benefits of Examinee-Selected Questions , 2005 .
[57] J. Neyman,et al. Consistent Estimates Based on Partially Consistent Observations , 1948 .
[58] Roger A. Sugden,et al. Multiple Imputation for Nonresponse in Surveys , 1988 .
[59] Tom A. B. Snijders. Asymptotic distribution of person fit statistics with estimated person parameters , 2001 .
[60] D. Rubin,et al. MULTIPLE IMPUTATIONS IN SAMPLE SURVEYS-A PHENOMENOLOGICAL BAYESIAN APPROACH TO NONRESPONSE , 2002 .
[61] J. Hox,et al. Prevention and treatment of item nonresponse. , 2003 .
[62] Tests of fit for polytomous models , 1995 .
[63] J. Gill. Hierarchical Linear Models , 2005 .
[64] Educational Evaluation. Standards for Educational and Psychological Testing , 1999 .
[65] Cornelis A.W. Glas,et al. Educational Evaluation, Assessment and Monitoring: A Systematic Approach , 2003 .
[66] C. A. W. Glas,et al. The Rasch Model and Multistage Testing , 1988 .
[67] Cornelis A.W. Glas,et al. A dynamic generalization of the Rasch model , 1993 .
[68] B. Muthén. A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators , 1984 .
[69] Cornelis A.W. Glas,et al. A Steps Model to Analyze Partial Credit , 1997 .
[70] M R Conaway. Causal nonresponse models for repeated categorical measurements. , 1994, Biometrics.
[71] R. P. McDonald,et al. Nonlinear factor analysis. , 1967 .
[72] D. Thissen,et al. Likelihood-Based Item-Fit Indices for Dichotomous Item Response Theory Models , 2000 .
[73] Mark Wilson,et al. The partial credit model and null categories , 1993 .
[74] Taesung Park,et al. Models for Categorical Data with Nonignorable Nonresponse , 1994 .
[75] Wendy M. Yen,et al. Effects of Local Item Dependence on the Fit and Equating Performance of the Three-Parameter Logistic Model , 1984 .
[76] Eric T. Bradlow,et al. Item Response Theory Models Applied to Data Allowing Examinee Choice , 1998 .
[77] M. Knott,et al. Generalized latent trait models , 2000 .
[78] Calyampudi R. Rao. Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.
[79] Georg Rasch,et al. Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.
[80] E. Maris,et al. A MCMC-method for models with continuous latent responses , 2002 .
[81] Mark Huisman,et al. Missing data in behavioral science research: Investigation of a collection of data sets , 1998 .
[82] R. J. Mokken,et al. A Theory and Procedure of Scale Analysis: With Applications in Political Research , 1971 .
[83] Mark D. Reckase,et al. The Difficulty of Test Items That Measure More Than One Ability , 1985 .
[84] Henk Kelderman,et al. Item bias detection using loglinear irt , 1989 .
[85] R. Hambleton,et al. Fundamentals of Item Response Theory , 1991 .
[86] F. Samejima. Estimation of latent ability using a response pattern of graded scores , 1969 .
[87] I. W. Molenaar,et al. Rasch models: foundations, recent developments and applications , 1995 .
[88] Cees A. W. Glas,et al. Dynamic Generalizations of the Rasch Model , 1995 .
[89] G. Tutz. Sequential item response models with an ordered response , 1990 .
[90] R. Hambleton,et al. Detecting potentially biased test items : Comparison of IRT area and Mantel-Haenszel methods , 1989 .
[91] Gerardus Johannes Andre Fox. Multilevel IRT: a Bayesian perspective on estimating parameters and testing statistical hypotheses , 2001 .
[92] A. Buse. The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note , 1982 .
[93] Richard J. Patz,et al. A Straightforward Approach to Markov Chain Monte Carlo Methods for Item Response Models , 1999 .
[94] Rebecca Holman,et al. Modelling non-ignorable missing-data mechanisms with item response theory models. , 2005, The British journal of mathematical and statistical psychology.
[95] P. Green,et al. A Bayesian Hierarchical Model for Categorical Data with Nonignorable Nonresponse , 2003, Biometrics.
[96] Cornelis A.W. Glas,et al. Modelling Measurement Error in Structural Multilevel Models , 2002 .
[97] Karen Draney,et al. Objective measurement : theory into practice , 1992 .
[98] Frederic M. Lord,et al. Small n justifies the Rasch model , 1983 .
[99] Norman Verhelst,et al. Maximum Likelihood Estimation in Generalized Rasch Models , 1986 .
[100] Terry A. Ackerman. Developments in Multidimensional Item Response Theory , 1996 .
[101] Robert J. Mislevy,et al. BILOG 3 : item analysis and test scoring with binary logistic models , 1990 .
[102] F. Lord. Applications of Item Response Theory To Practical Testing Problems , 1980 .
[103] Howard Wainer,et al. Use of item response theory in the study of group differences in trace lines. , 1988 .
[104] Cees A. W. Glas,et al. The derivation of some tests for the rasch model from the multinomial distribution , 1988 .
[105] W. M. Yen. Using Simulation Results to Choose a Latent Trait Model , 1981 .
[106] F. Baker,et al. Item response theory : parameter estimation techniques , 1993 .
[107] R. D. Bock,et al. Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .
[108] Cees A. W. Glas,et al. DETECTION OF DIFFERENTIAL ITEM FUNCTIONING USING LAGRANGE MULTIPLIER TESTS , 1996 .
[109] R. Hambleton,et al. Handbook of Modern Item Response Theory , 1997 .
[110] David Thissen,et al. Marginal maximum likelihood estimation for the one-parameter logistic model , 1982 .
[111] G. Barrie Wetherill,et al. Sampling Inspection and Quality Control, 2nd Edition. , 1978 .
[112] Robert J. Mislevy,et al. The role of collateral information about examinees in item parameter estimation , 1989 .
[113] W. H. Angoff,et al. Perspectives on differential item functioning methodology. , 1993 .
[114] Martin Knott,et al. Weighting for item non‐response in attitude scales by using latent variable models with covariates , 2000 .
[115] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[116] Brian D. Ripley,et al. Stochastic Simulation , 2005 .
[117] George A. Marcoulides,et al. Latent variable and latent structure models , 2002 .
[118] Kikumi K. Tatsuoka,et al. Caution indices based on item response theory , 1984 .
[119] Susan E. Embretson,et al. Item Response Theory Models and Spurious Interaction Effects in Factorial ANOVA Designs , 1996 .
[120] Ulrich Paquet. Bayesian inference for latent variable models , 2007 .
[121] R. Fay. Causal Models for Patterns of Nonresponse , 1986 .
[122] Cornelis A.W. Glas,et al. Differential Item Functioning Depending on General Covariates , 2001 .
[123] Klaas Sijtsma,et al. Factor analysis of multidimensional polytomous item response data suffering from ignorable item nonresponse. , 1999 .
[124] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[125] A. L. V. D. Wollenberg. The Rasch model and time-limit tests: an application and some theoretical contributions , 1979 .
[126] R. Darrell Bock,et al. Multiple Group IRT , 1997 .
[127] S. Embretson,et al. Item response theory for psychologists , 2000 .
[128] I. Moustaki,et al. A one dimension latent trait model to infer attitude from nonresponse for nominal data , 2000 .
[129] Eric T. Bradlow,et al. A Bayesian random effects model for testlets , 1999 .
[130] Gees A.W. Glas,et al. Item Calibration and Parameter Drift , 2000 .
[131] R. D. Bock,et al. Adaptive EAP Estimation of Ability in a Microcomputer Environment , 1982 .
[132] V. Linden,et al. Classical Test Theory , 2005 .
[133] Andrew Copas,et al. Dealing with non‐ignorable non‐response by using an ‘enthusiasm‐to‐respond’ variable , 1998 .
[134] J. Berger,et al. [Testing Precise Hypotheses]: Rejoinder , 1987 .
[135] A. Béguin,et al. MCMC estimation and some model-fit analysis of multidimensional IRT models , 2001 .
[136] Cees A. W. Glas,et al. Testing the Rasch Model , 1995 .
[137] Stan Lipovetsky,et al. Latent Variable Models and Factor Analysis , 2001, Technometrics.
[138] Howard Wainer,et al. Testlet Response Theory: An Analog for the 3PL Model Useful in Testlet-Based Adaptive Testing , 2000 .
[139] Pao-Kuei Wu,et al. MISSING RESPONSES AND IRT ABILITY ESTIMATION: OMITS, CHOICE, TIME LIMITS, AND ADAPTIVE TESTING , 1996 .
[140] Cees A. W. Glas. Structural Item Response Models , 2005 .
[141] Martin Abba Tanner,et al. Tools for Statistical Inference: Observed Data and Data Augmentation Methods , 1993 .
[142] Anton Beguin,et al. Using Classical Test Theory in Combination with Item Response Theory , 2003 .
[143] W. Michael Conklin,et al. Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.
[144] Colm O'Muircheartaigh,et al. Symmetric pattern models: a latent variable approach to item non‐response in attitude scales , 1999 .
[145] Jim Albert,et al. Ordinal Data Modeling , 2000 .
[146] G. C. Tiao,et al. Bayesian inference in statistical analysis , 1973 .
[147] A. Winsor. Sampling techniques. , 2000, Nursing times.
[148] Tom A. B. Snijders,et al. Asymptotic null distribution of person fit statistics with estimated person parameter , 2001 .
[149] I. Klugkist. Inequality Constrained Normal Linear Models , 1999 .
[150] J. Kiefer,et al. CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN THE PRESENCE OF INFINITELY MANY INCIDENTAL PARAMETERS , 1956 .
[151] Jean-Paul Fox,et al. Bayesian modeling of measurement error in predictor variables using item response theory , 2003 .
[152] Tapabrata Maiti,et al. Bayesian Data Analysis (2nd ed.) (Book) , 2004 .
[153] R. Hambleton,et al. Item Response Theory , 1984, The History of Educational Measurement.
[154] Robert J. Mislevy,et al. Does adaptive testing violate local independence? , 2000 .
[155] I. Moustaki. A latent trait and a latent class model for mixed observed variables , 1996 .
[156] M. Jansen,et al. The Rasch Model for Speed Tests and Some Extensions With Applications to Incomplete Designs , 1997 .
[157] Andrew Thomas,et al. WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..
[158] J. Fox,et al. Bayesian estimation of a multilevel IRT model using gibbs sampling , 2001 .
[159] Gerhard H. Fischer,et al. Derivations of the Rasch Model , 1995 .
[160] Herbert Hoijtink,et al. On person parameter estimation in the dichotomous Rasch model , 1995 .
[161] E. B. Andersen,et al. A goodness of fit test for the rasch model , 1973 .
[162] Arnold L. van den Wollenberg,et al. Two new test statistics for the rasch model , 1982 .
[163] M. Berger,et al. Sequential sampling designs for the two-parameter item response theory model , 1992 .
[164] C. Coombs. A theory of data. , 1965, Psychology Review.
[165] Mark D. Reckase,et al. A Linear Logistic Multidimensional Model for Dichotomous Item Response Data , 1997 .
[166] G. Masters. A rasch model for partial credit scoring , 1982 .
[167] Frank B. Baker,et al. An Investigation of the Item Parameter Recovery Characteristics of a Gibbs Sampling Procedure , 1998 .
[168] D. Rubin,et al. Statistical Analysis with Missing Data , 1988 .
[169] Anthony S. Bryk,et al. Hierarchical Linear Models: Applications and Data Analysis Methods , 1992 .