Structure and mode of action of a mosquitocidal holotoxin.

[1]  T. Tonozuka,et al.  Sugar-binding sites of the HA1 subcomponent of Clostridium botulinum type C progenitor toxin. , 2008, Journal of molecular biology.

[2]  M. Kusunoki,et al.  C-type Lectin-like Carbohydrate Recognition of the Hemolytic Lectin CEL-III Containing Ricin-type β-Trefoil Folds* , 2007, Journal of Biological Chemistry.

[3]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[4]  Hiroaki Tateno,et al.  Crystal structure of the Marasmius oreades mushroom lectin in complex with a xenotransplantation epitope. , 2007, Journal of molecular biology.

[5]  K. Aktories,et al.  Bacillus sphaericus mosquitocidal toxin (MTX) and pierisin: the enigmatic offspring from the family of ADP‐ribosyltransferases , 2006, Molecular microbiology.

[6]  G. Schulz,et al.  Structure of the mosquitocidal toxin from Bacillus sphaericus. , 2006, Journal of molecular biology.

[7]  A. Schwan,et al.  Exotoxin A–eEF2 complex structure indicates ADP ribosylation by ribosome mimicry , 2005, Nature.

[8]  M. Jobling,et al.  Structural Basis for the Activation of Cholera Toxin by Human ARF6-GTP , 2005, Science.

[9]  Leszek Rychlewski,et al.  FFAS03: a server for profile–profile sequence alignments , 2005, Nucleic Acids Res..

[10]  I. Goldstein,et al.  Structural Analysis of the Laetiporus sulphureus Hemolytic Pore-forming Lectin in Complex with Sugars* , 2005, Journal of Biological Chemistry.

[11]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[12]  K. Aktories,et al.  Two-site autoinhibition of the ADP-ribosylating mosquitocidal toxin (MTX) from Bacillus sphaericus by its 70-kDa ricin-like binding domain. , 2004, Biochemistry.

[13]  C. E. Stebbins,et al.  Assembly and function of a bacterial genotoxin , 2004, Nature.

[14]  Adrian A Canutescu,et al.  A graph‐theory algorithm for rapid protein side‐chain prediction , 2003, Protein science : a publication of the Protein Society.

[15]  Dagmar Ringe,et al.  Electronic Reprint Applied Crystallography Povscript+: a Program for Model and Data Visualization Using Persistence of Vision Ray-tracing Computer Programs Applied Crystallography Povscript+: a Program for Model and Data Visualization Using Persistence of Vision Ray-tracing , 2003 .

[16]  T. Sugimura,et al.  Identification of Glycosphingolipid Receptors for Pierisin-1, a Guanine-specific ADP-ribosylating Toxin from the Cabbage Butterfly* , 2003, The Journal of Biological Chemistry.

[17]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[18]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[19]  M. Rodnina,et al.  Inactivation of the Elongation Factor Tu by Mosquitocidal Toxin-Catalyzed Mono-ADP-Ribosylation , 2002, Applied and Environmental Microbiology.

[20]  G. Schulz,et al.  Structure of the ecto-ADP-ribosyl transferase ART2.2 from rat. , 2002, Journal of molecular biology.

[21]  K. Aktories,et al.  The ADP-ribosylating Mosquitocidal Toxin from Bacillus sphaericus , 2002, The Journal of Biological Chemistry.

[22]  J. Tainer,et al.  Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. , 2001, Journal of molecular biology.

[23]  David F. Burke,et al.  Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin , 2000, Nature.

[24]  T. Sugimura,et al.  Purification and cloning of pierisin-2, an apoptosis-inducing protein from the cabbage butterfly, Pieris brassicae. , 2000, European journal of biochemistry.

[25]  S. Swaminathan,et al.  Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B , 2000, Nature Structural Biology.

[26]  M. Nussenzweig,et al.  Crystal Structure of the Cysteine-Rich Domain of Mannose Receptor Complexed with a Sulfated Carbohydrate Ligand , 2000, The Journal of experimental medicine.

[27]  G. Schulz,et al.  The mechanism of the elongation and branching reaction of poly(ADP-ribose) polymerase as derived from crystal structures and mutagenesis. , 1998, Journal of molecular biology.

[28]  S. Swaminathan,et al.  Structure of the receptor binding fragment HC of tetanus neurotoxin , 1997, Nature Structural Biology.

[29]  R. Read,et al.  Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. , 1997, Biochemistry.

[30]  D Eisenberg,et al.  Crystal structure of nucleotide-free diphtheria toxin. , 1997, Biochemistry.

[31]  B. Hazes,et al.  The (QxW)3 domain: A flexible lectin scaffold , 1996, Protein science : a publication of the Protein Society.

[32]  I. Pastan,et al.  Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A. Porter,et al.  New gene from nine Bacillus sphaericus strains encoding highly conserved 35.8-kilodalton mosquitocidal toxins , 1996, Applied and environmental microbiology.

[34]  C. Sander,et al.  Errors in protein structures , 1996, Nature.

[35]  D Eisenberg,et al.  Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. , 1996, Biochemistry.

[36]  J. Charles,et al.  Bacillus sphaericus toxins: molecular biology and mode of action. , 1996, Annual review of entomology.

[37]  E. Westbrook,et al.  The three-dimensional crystal structure of cholera toxin. , 1995, Journal of molecular biology.

[38]  T. Tahirov,et al.  Crystal structure of abrin-a at 2.14 A. , 1995, Journal of molecular biology.

[39]  R. Read,et al.  A mosquitocidal toxin with a ricin-like cell-binding domain , 1995, Nature Structural Biology.

[40]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[41]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[42]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[43]  J. Hindley,et al.  Cytotoxicity and ADP-ribosylating activity of the mosquitocidal toxin from Bacillus sphaericus SSII-1: possible roles of the 27- and 70-kilodalton peptides , 1993, Journal of bacteriology.

[44]  J. Hindley,et al.  Proteolytic processing of the mosquitocidal toxin from Bacillus sphaericus SSII-1 , 1992, Journal of bacteriology.

[45]  J. Hindley,et al.  Cloning, sequencing, and expression of a gene encoding a 100-kilodalton mosquitocidal toxin from Bacillus sphaericus SSII-1 , 1991, Journal of bacteriology.

[46]  J. Robertus,et al.  Structure of ricin B‐chain at 2.5 Å resolution , 1991, Proteins.

[47]  M. Grütter,et al.  Crystallographic refinement of interleukin 1 beta at 2.0 A resolution. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Robertus,et al.  Structure and evolution of ricin B chain , 1987, Nature.

[49]  D. Mckay,et al.  Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. , 1986, Proceedings of the National Academy of Sciences of the United States of America.