Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes.

[1]  Benjamin W Booth,et al.  A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila , 2015, eLife.

[2]  K. Venken,et al.  Gene-specific cell labeling using MiMIC transposons , 2015, Nucleic acids research.

[3]  Liqun Luo,et al.  Improved and expanded Q-system reagents for genetic manipulations , 2014, Nature Methods.

[4]  L. Montoliu,et al.  The new CRISPR–Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals , 2014, Transgenic Research.

[5]  Y. Jan,et al.  Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila , 2013, Nature Neuroscience.

[6]  Jianzhong Xi,et al.  Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9 , 2013, Proceedings of the National Academy of Sciences.

[7]  Melissa M. Harrison,et al.  Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease , 2013, Genetics.

[8]  F. Diao,et al.  A Novel Approach for Directing Transgene Expression in Drosophila: T2A-Gal4 In-Frame Fusion , 2012, Genetics.

[9]  Haojiang Luan,et al.  Command and Compensation in a Neuromodulatory Decision Network , 2012, The Journal of Neuroscience.

[10]  Julie H. Simpson,et al.  Genetic Manipulation of Genes and Cells in the Nervous System of the Fruit Fly , 2011, Neuron.

[11]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[12]  J. Kahnt,et al.  Deficiency of prohormone convertase dPC2 (AMONTILLADO) results in impaired production of bioactive neuropeptide hormones in Drosophila , 2011, Journal of neurochemistry.

[13]  Karl Deisseroth,et al.  Optogenetics in Neural Systems , 2011, Neuron.

[14]  Nele A. Haelterman,et al.  MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes , 2011, Nature Methods.

[15]  Christopher J. Potter,et al.  A versatile in vivo system for directed dissection of gene expression patterns , 2011, Nature Methods.

[16]  G. Rubin,et al.  Refinement of Tools for Targeted Gene Expression in Drosophila , 2010, Genetics.

[17]  C. Wegener,et al.  The Proprotein Convertase Encoded by amontillado (amon) Is Required in Drosophila Corpora Cardiaca Endocrine Cells Producing the Glucose Regulatory Hormone AKH , 2010, PLoS genetics.

[18]  Liang Liang,et al.  The Q System: A Repressible Binary System for Transgene Expression, Lineage Tracing, and Mosaic Analysis , 2010, Cell.

[19]  A. Spradling,et al.  Epigenetic stability increases extensively during Drosophila follicle stem cell differentiation , 2010, Proceedings of the National Academy of Sciences.

[20]  M. Tanouye,et al.  Seizure Sensitivity Is Ameliorated by Targeted Expression of K+–Cl− Cotransporter Function in the Mushroom Body of the Drosophila Brain , 2010, Genetics.

[21]  Jeanne M. Rhea,et al.  The proprotein convertase amontillado (amon) is required during Drosophila pupal development. , 2009, Developmental biology.

[22]  Stefan Wölfl,et al.  Faithful Expression of Multiple Proteins via 2A-Peptide Self-Processing: A Versatile and Reliable Method for Manipulating Brain Circuits , 2009, The Journal of Neuroscience.

[23]  Thomas Brody,et al.  Conserved sequence block clustering and flanking inter-cluster flexibility delineate enhancers that regulate nerfin-1 expression during Drosophila CNS development. , 2009, Gene expression patterns : GEP.

[24]  N. Peabody,et al.  Bursicon Functions within the Drosophila CNS to Modulate Wing Expansion Behavior, Hormone Secretion, and Cell Death , 2008, The Journal of Neuroscience.

[25]  H. Honegger,et al.  Bursicon, the tanning hormone of insects: recent advances following the discovery of its molecular identity , 2008, Journal of Comparative Physiology A.

[26]  Andreas S. Thum,et al.  The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.

[27]  Aaron DiAntonio,et al.  Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS , 2008, The Journal of comparative neurology.

[28]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[29]  Haojiang Luan,et al.  Combinatorial methods for refined neuronal gene targeting , 2007, Current Opinion in Neurobiology.

[30]  R. Maeda,et al.  An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases , 2007, Proceedings of the National Academy of Sciences.

[31]  Haojiang Luan,et al.  Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression , 2006, Neuron.

[32]  Sen-Lin Lai,et al.  Genetic mosaic with dual binary transcriptional systems in Drosophila , 2006, Nature Neuroscience.

[33]  H. Aberle,et al.  The expression pattern of the Drosophila vesicular glutamate transporter: a marker protein for motoneurons and glutamatergic centers in the brain. , 2006, Gene expression patterns : GEP.

[34]  M. Nitabach,et al.  Functional Dissection of a Neuronal Network Required for Cuticle Tanning and Wing Expansion in Drosophila , 2006, The Journal of Neuroscience.

[35]  A. Diantonio Glutamate receptors at the Drosophila neuromuscular junction. , 2006, International review of neurobiology.

[36]  Benedict M. Sattelle,et al.  Insect GABA Receptors: Splicing, Editing, and Targeting by Antiparasitics and Insecticides , 2005, Molecular Pharmacology.

[37]  Barry J. Dickson,et al.  fruitless Splicing Specifies Male Courtship Behavior in Drosophila , 2005, Cell.

[38]  S. Sudo,et al.  Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Prokop,et al.  The Influence of Pioneer Neurons on a Growing Motor Nerve in Drosophila Requires the Neural Cell Adhesion Molecule Homolog FasciclinII , 2005, The Journal of Neuroscience.

[40]  Mei Han,et al.  Ap-let neurons--a peptidergic circuit potentially controlling ecdysial behavior in Drosophila. , 2004, Developmental biology.

[41]  C. Branda,et al.  Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. , 2004, Developmental cell.

[42]  N. Patel,et al.  Even-skipped, acting as a repressor, regulates axonal projections in Drosophila , 2003, Development.

[43]  Y. Sharma,et al.  PPTGAL, a convenient Gal4 P‐element vector for testing expression of enhancer fragments in drosophila , 2002, Genesis.

[44]  M. Adams,et al.  Deletion of the ecdysis-triggering hormone gene leads to lethal ecdysis deficiency. , 2002, Development.

[45]  T. Kitamoto,et al.  Drosophila cholinergic neurons and processes visualized with Gal4/UAS-GFP. , 2001, Brain research. Gene expression patterns.

[46]  R. Fuller,et al.  A Role for amontillado, the DrosophilaHomolog of the Neuropeptide Precursor Processing Protease PC2, in Triggering Hatching Behavior , 1999, The Journal of Neuroscience.

[47]  J. Reinitz,et al.  Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins , 1998, Development Genes and Evolution.

[48]  T. Kitamoto,et al.  Structure and Organization of the DrosophilaCholinergic Locus* , 1998, The Journal of Biological Chemistry.

[49]  D. Hartl,et al.  Transgene Coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. , 1996, Genetics.

[50]  D. Sattelle,et al.  Immunocytochemical mapping of a C-terminus anti-peptide antibody to the GABA receptor subunit, RDL in the nervous system of Drosophila melanogaster , 1996, Cell and Tissue Research.

[51]  T. Kitamoto,et al.  Immunocytochemical study of choline acetyltransferase in Drosophila melanogaster: An analysis of cis‐regulatory regions controlling expression in the brain of cDNA‐transformed flies , 1995, The Journal of comparative neurology.

[52]  D. Hyde,et al.  Two Drosophila Genes That Encode the α and β Subunits of the Brain Soluble Guanylyl Cyclase (*) , 1995, The Journal of Biological Chemistry.

[53]  C. Goodman,et al.  Genes that control neuromuscular specificity in Drosophila , 1993, Cell.

[54]  H. Keshishian,et al.  Identification of the neuropeptide transmitter proctolin in Drosophila larvae: characterization of muscle fiber-specific neuromuscular endings , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.