Incremental Spatiotemporal Learning for Online Modeling of Distributed Parameter Systems

An incremental spatiotemporal learning scheme is proposed for online modeling of distributed parameter systems (DPSs). A novel incremental learning method is developed to recursively update the spatial basis functions and the corresponding temporal model based on the Karhunen–Loève decomposition for time-space separation. The time-space synthesis continually evolves by adding new increment data with more updated information and revising the existing parameters of the dynamic system. In this way, the spatiotemporal structure is inherited and updated efficiently as output data increases over time. The adaptive nature of this evolving structure makes it promising for online modeling of DPSs under streaming data environment. The proposed incremental modeling scheme is evaluated on the classical benchmark of a catalytic rod problem. The simulation results demonstrate the viability and efficiency of the proposed method for online modeling of DPSs.

[1]  Han-Xiong Li,et al.  ISOMAP-Based Spatiotemporal Modeling for Lithium-Ion Battery Thermal Process , 2018, IEEE Transactions on Industrial Informatics.

[2]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[3]  Chenkun Qi,et al.  A time/space separation-based Hammerstein modeling approach for nonlinear distributed parameter processes , 2009, Comput. Chem. Eng..

[4]  Weihua Li,et al.  Recursive PCA for Adaptive Process Monitoring , 1999 .

[5]  Qibing Jin,et al.  Decoupled ARX and RBF Neural Network Modeling Using PCA and GA Optimization for Nonlinear Distributed Parameter Systems , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[6]  Stephen Grossberg,et al.  The ART of adaptive pattern recognition by a self-organizing neural network , 1988, Computer.

[7]  Han-Xiong Li,et al.  Kernel-Based Random Vector Functional-Link Network for Fast Learning of Spatiotemporal Dynamic Processes , 2019, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[8]  Han-Xiong Li,et al.  Spatially Piecewise Fuzzy Control Design for Sampled-Data Exponential Stabilization of Semilinear Parabolic PDE Systems , 2018, IEEE Transactions on Fuzzy Systems.

[9]  Eugenio Schuster,et al.  On recursive proper orthogonal decomposition via perturbation theory with applications to distributed sensing in cyber-physical systems , 2010, Proceedings of the 2010 American Control Conference.

[10]  Zhen Liu,et al.  A Spatiotemporal Estimation Method for Temperature Distribution in Lithium-Ion Batteries , 2014, IEEE Transactions on Industrial Informatics.

[11]  Haibo He,et al.  Incremental Learning From Stream Data , 2011, IEEE Transactions on Neural Networks.

[12]  Dana Kulic,et al.  Incremental learning of full body motion primitives and their sequencing through human motion observation , 2012, Int. J. Robotics Res..

[13]  P. Christofides,et al.  Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes , 2002 .

[14]  Eugenio Schuster,et al.  Low‐dimensional modeling of linear heat transfer systems using incremental the proper orthogonal decomposition method , 2013 .

[15]  Xin Yao,et al.  Population-Based Incremental Learning With Associative Memory for Dynamic Environments , 2008, IEEE Transactions on Evolutionary Computation.

[16]  Xin Chen,et al.  Deep Learning-Based Model Reduction for Distributed Parameter Systems , 2016, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[17]  Daoyi Dong,et al.  A novel incremental learning scheme for reinforcement learning in dynamic environments , 2016, 2016 12th World Congress on Intelligent Control and Automation (WCICA).

[18]  Antonios Armaou,et al.  Feedback control of dissipative PDE systems using adaptive model reduction , 2009 .

[19]  Davood Babaei Pourkargar,et al.  APOD‐based control of linear distributed parameter systems under sensor/controller communication bandwidth limitations , 2015 .

[20]  P. Christofides,et al.  Finite-dimensional approximation and control of non-linear parabolic PDE systems , 2000 .

[21]  Chenkun Qi,et al.  Nonlinear dimension reduction based neural modeling for distributed parameter processes , 2009 .

[22]  Davood Babaei Pourkargar,et al.  Modification to adaptive model reduction for regulation of distributed parameter systems with fast transients , 2013 .

[23]  Hongyuan Zha,et al.  On Updating Problems in Latent Semantic Indexing , 1997, SIAM J. Sci. Comput..

[24]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[25]  Haralambos Sarimveis,et al.  Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models , 2008, Comput. Chem. Eng..

[26]  Huai-Ning Wu,et al.  Exponential Pointwise Stabilization of Semilinear Parabolic Distributed Parameter Systems via the Takagi–Sugeno Fuzzy PDE Model , 2018, IEEE Transactions on Fuzzy Systems.

[27]  Guanrong Chen,et al.  Spectral-approximation-based intelligent modeling for distributed thermal processes , 2005, IEEE Transactions on Control Systems Technology.

[28]  Chenkun Qi,et al.  Incremental Modeling of Nonlinear Distributed Parameter Processes via Spatiotemporal Kernel Series Expansion , 2009 .

[29]  E. Schuster,et al.  Model order reduction for high dimensional linear systems based on rank-1 incremental proper orthogonal decomposition , 2011, Proceedings of the 2011 American Control Conference.

[30]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[31]  John L. Hudson,et al.  Modeling of a fixed-bed reactor using the K-L expansion and neural networks , 1996 .

[32]  Han-Xiong Li,et al.  A Membership-Function-Dependent Approach to Design Fuzzy Pointwise State Feedback Controller for Nonlinear Parabolic Distributed Parameter Systems With Spatially Discrete Actuators , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[33]  Chenkun Qi,et al.  Modeling of distributed parameter systems for applications—A synthesized review from time–space separation , 2010 .

[34]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[35]  Michael Lindenbaum,et al.  Sequential Karhunen-Loeve basis extraction and its application to images , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[36]  Stephen A. Billings,et al.  Identification of finite dimensional models of infinite dimensional dynamical systems , 2002, Autom..

[37]  N. Smaoui,et al.  Modelling the dynamics of nonlinear partial differential equations using neural networks , 2004 .

[38]  Robi Polikar,et al.  Incremental Learning of Concept Drift in Nonstationary Environments , 2011, IEEE Transactions on Neural Networks.