Optimal control problems with control complementarity constraints: existence results, optimality conditions, and a penalty method

ABSTRACT A special class of optimal control problems with complementarity constraints on the control functions is studied. It is shown that such problems possess optimal solutions whenever the underlying control space is a first-order Sobolev space. After deriving necessary optimality conditions of strong stationarity-type, a penalty method based on the Fischer–Burmeister function is suggested and its theoretical properties are analyzed. Finally, the numerical treatment of the problem is discussed and results of computational experiments are presented.

[1]  Lei Guo,et al.  Necessary Optimality Conditions for Optimal Control Problems with Equilibrium Constraints , 2016, SIAM J. Control. Optim..

[2]  Jane J. Ye,et al.  Exact Penalization and Necessary Optimality Conditions for Generalized Bilevel Programming Problems , 1997, SIAM J. Optim..

[3]  Christian Kanzow,et al.  Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints , 2011, Mathematical Programming.

[4]  Francisco Facchinei,et al.  A Theoretical and Numerical Comparison of Some Semismooth Algorithms for Complementarity Problems , 2000, Comput. Optim. Appl..

[5]  Jong-Shi Pang,et al.  Differential variational inequalities , 2008, Math. Program..

[6]  J. Toland,et al.  NONLINEAR SUPERPOSITION OPERATORS , 1992 .

[7]  Yu Deng,et al.  Optimal control in first-order Sobolev spaces with inequality constraints , 2019, Comput. Optim. Appl..

[8]  Gerd Wachsmuth,et al.  Comparison of optimality systems for the optimal control of the obstacle problem , 2018 .

[9]  H. Goldberg,et al.  On NEMYTSKIJ Operators in Lp‐Spaces of Abstract Functions , 1992 .

[10]  Benjamin Pfaff,et al.  Perturbation Analysis Of Optimization Problems , 2016 .

[11]  Ivan P. Gavrilyuk,et al.  Variational analysis in Sobolev and BV spaces , 2007, Math. Comput..

[12]  Michael Ulbrich,et al.  Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.

[13]  Christian Kanzow,et al.  Theorie und Numerik restringierter Optimierungsaufgaben , 2002 .

[14]  C. Clason,et al.  A convex penalty for switching control of partial differential equations , 2016, Syst. Control. Lett..

[15]  Karl Kunisch,et al.  Nonconvex penalization of switching control of partial differential equations , 2016, Syst. Control. Lett..

[16]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[17]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[18]  Gerd Wachsmuth,et al.  Weak and strong stationarity in generalized bilevel programming and bilevel optimal control , 2016 .

[19]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[20]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[21]  I. Gavrilyuk Book Review: Variational analysis in Sobolev and BV spaces , 2007 .

[22]  Jane J. Ye,et al.  Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints , 2005 .

[23]  K. Kunisch,et al.  A convex analysis approach to optimal controls with switching structure for partial differential equations , 2016, 1702.07540.

[24]  A. Fischer A special newton-type optimization method , 1992 .

[25]  Francis Clarke,et al.  Optimal Control Problems with Mixed Constraints , 2010, SIAM J. Control. Optim..

[26]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[27]  L. Qi,et al.  A Survey of Some Nonsmooth Equations and Smoothing Newton Methods , 1999 .

[28]  U. Prüfert,et al.  On an optimal control problem with gradient constraints , 2020, Optimization.

[29]  Defeng Sun,et al.  On NCP-Functions , 1999, Comput. Optim. Appl..

[30]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[31]  Gerd Wachsmuth,et al.  The limiting normal cone of a complementarity set in Sobolev spaces , 2018, Optimization.

[32]  Francisco Facchinei,et al.  Regularity Properties of a Semismooth Reformulation of Variational Inequalities , 1998, SIAM J. Optim..

[33]  Gerd Wachsmuth,et al.  Mathematical Programs with Complementarity Constraints in Banach Spaces , 2014, Journal of Optimization Theory and Applications.

[34]  Gerd Wachsmuth,et al.  The Limiting Normal Cone to Pointwise Defined Sets in Lebesgue Spaces , 2018 .

[35]  G. Burton Sobolev Spaces , 2013 .

[36]  L. Evans,et al.  Partial Differential Equations , 1941 .

[37]  Masao Fukushima,et al.  Complementarity Constraint Qualifications and Simplified B-Stationarity Conditions for Mathematical Programs with Equilibrium Constraints , 1999, Comput. Optim. Appl..

[38]  Lei Guo,et al.  Necessary Optimality Conditions for Optimal Control Problems with Equilibrium Constraints , 2016, SIAM J. Control. Optim..