Aluminum oxynitride at pressures up to 180 GPa

Hugoniot equation-of-state data of shock compressed aluminum oxynitride (AlON), consisting of 64.1 mol% Al2O3⋅35.9 mol% AlN with a density of ∼3.68 g/cm3, have been determined to 180 GPa. The relationship between shock velocity (Us) and particle velocity (Up) is expressed by a straight line: Us(km/s)=8.08+0.761Up(km/s). Although there is no evidence of phase transition in the data, the determined Hugoniot of AlON has been compared with those of oxide spinels such as MgAl2O4 and Fe3O4. We discuss the systematics of high pressure phase transitions of spinels that indicate a phase transition to CaTi2O4-type phases. The phase transition to CaTi2O4-type structures implies that the recently discovered Si3N4 spinel also may be transformed into a CaTi2O4-type phase with increasing pressure.

[1]  I. Tanaka,et al.  Theoretical Prediction of Post‐Spinel Phases of Silicon Nitride , 2004 .

[2]  K. Leinenweber,et al.  Rapid Synthesis of Crystalline Spinel Tin Nitride by a Solid‐State Metathesis Reaction , 2004 .

[3]  K.H.J. Buschow,et al.  Encyclopedia of Materials: Science and Technology , 2004 .

[4]  T. Irifune,et al.  In situ X-ray observations of phase transitions in MgAl2O4 spinel to 40 GPa using multianvil apparatus with sintered diamond anvils , 2002 .

[5]  M. Catti High-pressure stability, structure and compressibility of Cmcm -MgAl2O4: an ab initio study , 2001 .

[6]  K. Kimoto,et al.  Phase transformation of germanium nitride (Ge3N4) under shock wave compression , 2001 .

[7]  P. Kroll,et al.  Post‐Spinel Phases of Silicon Nitride , 2001 .

[8]  Hongliang He,et al.  Shock-induced phase transition of -Si3N4 to c-Si3N4 , 2000 .

[9]  T. Mashimo,et al.  High‐pressure phase transformation of corundum (α‐Al2O3) observed under shock compression , 2000 .

[10]  J. Jiang,et al.  Structural characterization of cubic silicon nitride , 2000 .

[11]  Hongliang He,et al.  Shock-induced transformation of β-Si3N4 to a high-pressure cubic-spinel phase , 2000 .

[12]  R. Riedel,et al.  Spinel‐Si3N4: Multi‐Anvil Press Synthesis and Structural Refinement , 2000 .

[13]  S. Stølen,et al.  Equation of state of magnetite and its high-pressure modification: Thermodynamics of the Fe-O system at high pressure , 2000 .

[14]  A. Nakamura,et al.  Yield properties, phase transition, and equation of state of aluminum nitride (AlN) under shock compression up to 150 GPa , 1999 .

[15]  K. Leinenweber,et al.  Synthesis and Structure Refinement of the Spinel, γ‐Ge3N4 , 1999 .

[16]  H. Jacobs,et al.  Sn3N4, ein Zinn(IV)‐nitrid – Synthese und erste Strukturbestimmung einer binären Zinn–Stickstoff‐Verbindung , 1999 .

[17]  O. Tschauner,et al.  Synthesis of a cubic Ge3N4 phase at high pressures and temperatures , 1999 .

[18]  R. Riedel,et al.  Synthesis of cubic silicon nitride , 1999, Nature.

[19]  R. Jeanloz,et al.  High‐pressure transformations in MgAl2O4 , 1998 .

[20]  T. Kobayashi,et al.  Shock compression of 6H polytype SiC to 160 GPa , 1997 .

[21]  J. Mccauley,et al.  Elastic properties of polycrystalline aluminum oxynitride spinel and their dependence on pressure, temperature, and composition , 1988 .

[22]  H. Schäfer,et al.  Shock effects in MgAl2O4-spinel , 1983 .

[23]  S. Marsh Lasl Shock Hugoniot Data , 1980 .

[24]  J. Mccauley,et al.  Phase Relations and Reaction Sintering of Transparent Cubic Aluminum Oxynitride Spinel (ALON) , 1979 .

[25]  Normand D. Corbin,et al.  Aluminum oxynitride spinel: A review , 1989 .