Elastoplastic analysis of pressure‐sensitive materials by an effective three‐dimensional mixed finite element

This work is focused on the analysis of three-dimensional bodies whose mechanical behavior can be modeled by an elastoplastic pressure-sensitive material description. To this end the yield condition is assessed with respect to a general quadratic function capable to represent both standard surfaces, such as Drucker–Prager surface, or more generic surfaces. For the sake of the efficiency and robustness of the numerical analysis of general-shape solids, an effective mixed tetrahedral finite element is used to perform a step-by-step analysis obtaining the complete equilibrium path and the collapse load. Some numerical results regarding technical problems, such as masonry walls and footing problems, show the effectiveness of the mechanical model and of the numerical strategy.

[1]  Dionisio Del Vescovo,et al.  Dynamic problems for metamaterials: Review of existing models and ideas for further research , 2014 .

[2]  Paulo B. Lourenço,et al.  A plane stress softening plasticity model for orthotropic materials , 1997 .

[3]  H. Altenbach,et al.  On the linear theory of micropolar plates , 2009 .

[4]  Leopoldo Greco,et al.  A variational model based on isogeometric interpolation for the analysis of cracked bodies , 2014 .

[5]  Giuseppe Piccardo,et al.  A complete dynamic approach to the Generalized Beam Theory cross-section analysis including extension and shear modes , 2014 .

[6]  Ugo Andreaus,et al.  An optimal control procedure for bone adaptation under mechanical stimulus , 2012 .

[7]  Hai-Sui Yu,et al.  Lower bound limit analysis of unreinforced masonry shear walls , 2001, Numerical Models in Geomechanics.

[8]  Flavio Stochino,et al.  An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams , 2016 .

[9]  Flavio Stochino,et al.  Sardinia radio telescope finite element model updating by means of photogrammetric measurements , 2017 .

[10]  Paulo B. Lourenço,et al.  Abbreviated Title : Homogenised limit analysis of masonry , failure surfaces , 2007 .

[11]  Francesco dell’Isola,et al.  Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices , 2015 .

[12]  Angelo Luongo,et al.  A damage constitutive model for sliding friction coupled to wear , 2013 .

[13]  A. Della Corte,et al.  The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  A. Misra,et al.  Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics , 2015 .

[15]  G. Wittum,et al.  A poroplastic model of structural reorganisation in porous media of biomechanical interest , 2016 .

[16]  Emilio Turco,et al.  Tools for the numerical solution of inverse problems in structural mechanics: review and research perspectives , 2017 .

[17]  N. Roveri,et al.  Damage detection in structures under traveling loads by Hilbert–Huang transform , 2012 .

[18]  Emilio Turco,et al.  A numerical study on the solution of the Cauchy problem in elasticity , 2009 .

[19]  Noël Challamel,et al.  Discrete and non-local elastica , 2015 .

[20]  Emilio Turco,et al.  Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements , 2000 .

[21]  A. Misra,et al.  Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics* , 2020 .

[22]  Flavio Stochino,et al.  The Sardinia Radio Telescope: A comparison between close-range photogrammetry and finite element models , 2017 .

[23]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[24]  Flavio Stochino,et al.  Constitutive models for strongly curved beams in the frame of isogeometric analysis , 2016 .

[25]  Raffaele Casciaro,et al.  A high-performance element for the analysis of 2D elastoplastic continua , 2007 .

[26]  Emilio Turco,et al.  Performance of a high‐continuity finite element in three‐dimensional elasticity , 2010 .

[27]  Leopoldo Greco,et al.  B-Spline interpolation of Kirchhoff-Love space rods , 2013 .

[28]  Gabriele Milani,et al.  Homogenised limit analysis of masonry walls, Part II: Structural examples , 2006 .

[29]  Leopoldo Greco,et al.  An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod , 2014 .

[30]  Emilio Turco,et al.  Computing Volume Bounds of Inclusions by Eit Measurements , 2007, J. Sci. Comput..

[31]  E. Turco,et al.  Multiscale 3D mixed FEM analysis of historical masonry constructions , 2017 .

[32]  Ugo Andreaus,et al.  At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola , 2013, 1310.5599.

[33]  M. Pulvirenti,et al.  Macroscopic Description of Microscopically Strongly Inhomogenous Systems: A Mathematical Basis for the Synthesis of Higher Gradients Metamaterials , 2015, 1504.08015.

[34]  Stefano Gabriele,et al.  Initial postbuckling behavior of thin-walled frames under mode interaction , 2013 .

[35]  Antonio Cazzani,et al.  Isogeometric analysis of plane-curved beams , 2016 .

[36]  A. Morassi,et al.  Reconstructing blockages in a symmetric duct via quasi-isospectral horn operators , 2016 .

[37]  Andrea Braides,et al.  Asymptotic analysis of Lennard-Jones systems beyond the nearest-neighbour setting: A one-dimensional prototypical case , 2016 .

[38]  Ivan Giorgio,et al.  Pantographic 2D sheets: Discussion of some numerical investigations and potential applications , 2016 .

[39]  R. Vitaliani,et al.  An orthotropic damage model for masonry structures , 2002 .

[40]  R. Borst,et al.  The use of the Hoffman yield criterion in finite element analysis of anisotropic composites , 1990 .

[41]  Emilio Turco,et al.  Numerical sensitivity analysis of corrosion detection† , 2017 .

[42]  Antonio Cazzani,et al.  Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches , 2016 .

[43]  Francesco dell’Isola,et al.  Pattern formation in the three-dimensional deformations of fibered sheets , 2015 .

[44]  K. Toh,et al.  Preconditioned IDR(s) iterative solver for non‐symmetric linear system associated with FEM analysis of shallow foundation , 2013 .

[45]  G. Garcea,et al.  A composite mixed finite element model for the elasto-plastic analysis of 3D structural problems , 2016 .

[46]  Leonardo Leonetti,et al.  Three field finite elements for the elastoplastic analysis of 2D continua , 2011 .

[47]  Flavio Stochino,et al.  On the whole spectrum of Timoshenko beams. Part I: a theoretical revisitation , 2016 .

[48]  E. P. Popov,et al.  Accuracy and stability of integration algorithms for elastoplastic constitutive relations , 1985 .

[49]  Raffaele Casciaro,et al.  Assumed stress formulation of high order quadrilateral elements with an improved in-plane bending behaviour , 2002 .

[50]  Flavio Stochino,et al.  On the whole spectrum of Timoshenko beams. Part II: further applications , 2016, Zeitschrift für angewandte Mathematik und Physik.

[51]  Yang Yang,et al.  Higher-Order Continuum Theory Applied to Fracture Simulation of Nanoscale Intergranular Glassy Film , 2011 .

[52]  Emilio Turco Identification of Axial Forces on Statically Indeterminate Pin-Jointed Trusses by a Nondestructive Mechanical Test , 2013 .

[53]  Esteban P. Busso,et al.  Second strain gradient elasticity of nano-objects , 2016 .

[54]  Alessandro Della Corte,et al.  Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof , 2015 .

[55]  Victor A. Eremeyev,et al.  Deformation analysis of functionally graded beams by the direct approach , 2012 .

[56]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .