Active wrinkles to drive self-cleaning: A strategy for anti-thrombotic surfaces for vascular grafts.

[1]  E. Cerda,et al.  Topography-driven surface renewal , 2018, Nature Physics.

[2]  C. Siedlecki,et al.  Protein adsorption, platelet adhesion, and bacterial adhesion to polyethylene-glycol-textured polyurethane biomaterial surfaces. , 2017, Journal of biomedical materials research. Part B, Applied biomaterials.

[3]  R. Biran,et al.  Heparin coatings for improving blood compatibility of medical devices☆ , 2017, Advanced drug delivery reviews.

[4]  M. Eppihimer,et al.  Anti-thrombotic technologies for medical devices. , 2017, Advanced drug delivery reviews.

[5]  J. Hutchinson,et al.  The Mechanics and Reliability of Films, Multilayers and Coatings , 2017 .

[6]  M. Dong,et al.  Biomimetic cardiovascular stents for in vivo re-endothelialization. , 2016, Biomaterials.

[7]  J. H. Henderson,et al.  On-Demand Removal of Bacterial Biofilms via Shape Memory Activation , 2016, ACS applied materials & interfaces.

[8]  P. Withers,et al.  Morphological Characterisation of Unstained and Intact Tissue Micro-architecture by X-ray Computed Micro- and Nano-Tomography , 2015, Scientific Reports.

[9]  Xuanhe Zhao,et al.  Dynamic surface deformation of silicone elastomers for management of marine biofouling: laboratory and field studies using pneumatic actuation , 2015, Biofouling.

[10]  Alexander D. Malkin,et al.  Hollow fiber membrane modification with functional zwitterionic macromolecules for improved thromboresistance in artificial lungs. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[11]  Samuel K. Luketich,et al.  Nonthrombogenic, biodegradable elastomeric polyurethanes with variable sulfobetaine content. , 2014, ACS applied materials & interfaces.

[12]  Xuanhe Zhao,et al.  Soft Robotic Concepts in Catheter Design: an On‐Demand Fouling‐Release Urinary Catheter , 2014, Advanced healthcare materials.

[13]  Nathaniel C. Cady,et al.  Nano and Microscale Topographies for the Prevention of Bacterial Surface Fouling , 2014 .

[14]  James Walker,et al.  The interaction of marine fouling organisms with topography of varied scale and geometry: a review , 2013, Biointerphases.

[15]  J. Aizenberg,et al.  Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces , 2013 .

[16]  Xuanhe Zhao,et al.  Bioinspired Surfaces with Dynamic Topography for Active Control of Biofouling , 2013, Advanced materials.

[17]  V. Vogel,et al.  Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. , 2012, Acta biomaterialia.

[18]  Ali Khademhosseini,et al.  Engineering microscale topographies to control the cell-substrate interface. , 2012, Biomaterials.

[19]  Alexander M Seifalian,et al.  Role of prosthetic conduits in coronary artery bypass grafting. , 2011, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[20]  Lei Jiang,et al.  On improving blood compatibility: from bioinspired to synthetic design and fabrication of biointerfacial topography at micro/nano scales. , 2011, Colloids and Surfaces B: Biointerfaces.

[21]  K. Ishihara,et al.  Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. , 2010, Colloids and surfaces. B, Biointerfaces.

[22]  Subbu S Venkatraman,et al.  The effect of topography of polymer surfaces on platelet adhesion. , 2010, Biomaterials.

[23]  Jian Shen,et al.  Preparation of lotus-leaf-like polystyrene micro- and nanostructure films and its blood compatibility , 2009 .

[24]  R. Langer,et al.  Engineering substrate topography at the micro- and nanoscale to control cell function. , 2009, Angewandte Chemie.

[25]  Lei Jiang,et al.  Antiplatelet and thermally responsive poly(N-isopropylacrylamide) surface with nanoscale topography. , 2009, Journal of the American Chemical Society.

[26]  B. Lin,et al.  Geometric tools for complex interfaces: from lung surfactant to the mussel byssus , 2009 .

[27]  Bharat Bhushan,et al.  Biomimetics: lessons from nature–an overview , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  I. Rodríguez,et al.  Platelet adhesion studies on nanostructured poly(lactic-co-glycolic-acid)-carbon nanotube composite. , 2008, Journal of biomedical materials research. Part A.

[29]  J. Rogers,et al.  Finite deformation mechanics in buckled thin films on compliant supports , 2007, Proceedings of the National Academy of Sciences.

[30]  Klaus Affeld,et al.  The effect of surface roughness on activation of the coagulation system and platelet adhesion in rotary blood pumps. , 2007, Artificial organs.

[31]  Manuel Théry,et al.  The Universal Dynamics of Cell Spreading , 2007, Current Biology.

[32]  P. Serruys,et al.  Optical Coherence Tomography in Cardiovascular Research , 2007 .

[33]  Jan Genzer,et al.  Soft matter with hard skin: From skin wrinkles to templating and material characterization. , 2006, Soft matter.

[34]  M. Romiti,et al.  Meta-analysis of alternate autologous vein bypass grafts to infrapopliteal arteries. , 2005, Journal of vascular surgery.

[35]  C. McCollum,et al.  Heparin-bonded Dacron or polytetrafluorethylene for femoropopliteal bypass: five-year results of a prospective randomized multicenter clinical trial. , 2004, Journal of vascular surgery.

[36]  J. Watanabe,et al.  Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. , 2003, Biomaterials.

[37]  Carine Michiels,et al.  Endothelial cell functions , 2003, Journal of cellular physiology.

[38]  C. Murphy,et al.  Epithelial contact guidance on well-defined micro- and nanostructured substrates , 2003, Journal of Cell Science.

[39]  C. Bodian,et al.  Dynamics of GPIIb/IIIa-mediated platelet-platelet interactions in platelet adhesion/thrombus formation on collagen in vitro as revealed by videomicroscopy. , 2003, Blood.

[40]  J. Genzer,et al.  Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. , 2002, Journal of colloid and interface science.

[41]  Kinam Park,et al.  In vitro and in vivo studies of PEO-grafted blood-contacting cardiovascular prostheses , 2000, Journal of biomaterials science. Polymer edition.

[42]  A. Barnes,et al.  Dynamics of Water in the Poly(ethylene oxide) Hydration Shell: A Quasi Elastic Neutron-Scattering Study , 1994 .

[43]  B. Duling,et al.  Morphology of the constricted arteriolar wall: physiological implications. , 1984, The American journal of physiology.

[44]  W. Reichert,et al.  Chapter I.2.15 – Textured and Porous Materials , 2013 .

[45]  S. Kuribayashi,et al.  Fluorinated diamond-like carbon as antithrombogenic coating for blood-contacting devices. , 2006, Journal of biomedical materials research. Part A.

[46]  F. Moll,et al.  Heparin immobilization reduces thrombogenicity of small-caliber expanded polytetrafluoroethylene grafts. , 2006, Journal of vascular surgery.

[47]  M. Safar Geometry and stiffness of the arterial wall in essential hypertension , 1993 .

[48]  A. B. Strong,et al.  Effect of surface roughness on platelet adhesion under static and under flow conditions. , 1982, Canadian journal of surgery. Journal canadien de chirurgie.