A 90-nm low-power 32-kB embedded SRAM with gate leakage suppression circuit for mobile applications

In sub-100-nm generation, gate-tunneling leakage current increases and dominates the total standby leakage current of LSIs based on decreasing gate-oxide thickness. Showing that the gate leakage current is effectively reduced by lowering the gate voltage, we propose a local dc level control (LDLC) for SRAM cell arrays and an automatic gate leakage suppression driver (AGLSD) for peripheral circuits. We designed and fabricated a 32-kB 1-port SRAM using 90-nm CMOS technology. The six-transistor SRAM cell size is 1.25 /spl mu/m/sup 2/. Evaluation shows that the standby current of 32-kB SRAM is 1.2 /spl mu/A at 1.2 V and room temperature. It is reduced to 7.5% of conventional SRAM.

[1]  K. Eriguchi,et al.  Sub-1 /spl mu/m/sup 2/ high density embedded SRAM technologies for 100 nm generation SOC and beyond , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).

[2]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[3]  Tadayoshi Enomoto,et al.  A self-controllable voltage level (SVL) circuit and its low-power high-speed CMOS circuit applications , 2003, IEEE J. Solid State Circuits.

[4]  William J. Bowhill,et al.  Design of High-Performance Microprocessor Circuits , 2001 .

[5]  J. Meindl,et al.  The impact of intrinsic device fluctuations on CMOS SRAM cell stability , 2001, IEEE J. Solid State Circuits.

[6]  Kiyotaka Imai,et al.  CMOS device optimization for system-on-a-chip applications , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[7]  Kaushik Roy,et al.  A single-Vt low-leakage gated-ground cache for deep submicron , 2003, IEEE J. Solid State Circuits.

[8]  Akira Matsuzawa,et al.  A 0.5 V single power supply operated high-speed boosted and offset-grounded data storage (BOGS) SRAM cell architecture , 1997, IEEE Trans. Very Large Scale Integr. Syst..

[9]  K. Ishibashi,et al.  16.7 fA/cell tunnel-leakage-suppressed 16 Mb SRAM for handling cosmic-ray-induced multi-errors , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[10]  Koji Nii,et al.  A low power SRAM using auto-backgate-controlled MT-CMOS , 1998, Proceedings. 1998 International Symposium on Low Power Electronics and Design (IEEE Cat. No.98TH8379).

[11]  K. Ishibashi,et al.  Universal-Vdd 0.65-2.0V 32 kB cache using voltage-adapted timing-generation scheme and a lithographical-symmetric cell , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[12]  M. Immediato,et al.  A pico-joule class, 1 GHz, 32 KByte/spl times/64 b DSP SRAM with self reverse bias , 2003, 2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408).

[13]  Kenichi Osada,et al.  Universal-Vdd 0.65-2.0-V 32-kB cache using a voltage-adapted timing-generation scheme and a lithographically symmetrical cell , 2001, IEEE J. Solid State Circuits.