SiZer Inference for Varying Coefficient Models

Varying coefficient models are a useful statistical tool to explore dynamic patterns of a regression relationship, in which the variation features of the regression coefficients are taken as the main evidence to reflect the dynamic relationship between the response and the explanatory variables. In this study, we propose a SiZer approach as a visually diagnostic device to uncover the statistically significant features of the coefficients. This method can highlight the significant structures of the coefficients under different scales and can therefore extract relatively full information in the data. The simulation studies and real-world data analysis show that the SiZer approach performs satisfactorily in mining the significant features of the coefficients.

[1]  Jianqing Fan,et al.  Two‐step estimation of functional linear models with applications to longitudinal data , 1999 .

[2]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[3]  Ruey S. Tsay,et al.  Functional-Coefficient Autoregressive Models , 1993 .

[4]  Jianqing Fan,et al.  Statistical Methods with Varying Coefficient Models. , 2008, Statistics and its interface.

[5]  Maria Grazia Pittau Exploring patterns of income polarization using SIZER , 2007 .

[6]  J. S. Marron,et al.  Visualization and inference based on wavelet coefficients, SiZer and SiNos , 2007, Comput. Stat. Data Anal..

[7]  C. S. Kim SiZer for jump detection , 1999 .

[8]  Stanley R. Johnson,et al.  Varying Coefficient Models , 1984 .

[9]  Jianqing Fan,et al.  Statistical Estimation in Varying-Coefficient Models , 1999 .

[10]  Jan Hannig,et al.  Improved sizer for time series , 2009 .

[11]  O. Linton Local Regression Models , 2010 .

[12]  Jianqing Fan,et al.  Efficient Estimation and Inferences for Varying-Coefficient Models , 2000 .

[13]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[14]  Xin-Yuan Song,et al.  Local Polynomial Fitting in Semivarying Coefficient Model , 2002 .

[15]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[16]  Chin-Tsang Chiang,et al.  Asymptotic Confidence Regions for Kernel Smoothing of a Varying-Coefficient Model With Longitudinal Data , 1998 .

[17]  Jan Hannig,et al.  Multiscale Exploratory Analysis of Regression Quantiles Using Quantile SiZer , 2010 .

[18]  J. S. Marron,et al.  Interactive local bandwidth choice , 1999, Stat. Comput..

[19]  James Stephen Marron,et al.  Advanced Distribution Theory for SiZer , 2006 .

[20]  Probal Chaudhuri,et al.  Significance in Scale Space for Bivariate Density Estimation , 2002 .

[21]  Jan Hannig,et al.  Robust SiZer for Exploration of Regression Structures and Outlier Detection , 2006 .

[22]  María Dolores Martínez Miranda,et al.  SiZer Map for inference with additive models , 2008, Stat. Comput..

[23]  Lasse Holmström,et al.  Bayesian Multiscale Smoothing for Making Inferences About Features in Scatterplots , 2005 .

[24]  Adrian Bowman,et al.  On the Use of Nonparametric Regression for Checking Linear Relationships , 1993 .

[25]  J. Marron,et al.  SCALE SPACE VIEW OF CURVE ESTIMATION , 2000 .

[26]  J. Marron,et al.  SiZer for Exploration of Structures in Curves , 1999 .

[27]  James Stephen Marron,et al.  Dependent SiZer: Goodness-of-Fit Tests for Time Series Models , 2004 .

[28]  James Stephen Marron,et al.  Sizer for smoothing splines , 2005, Comput. Stat..

[29]  Cheolwoo Park,et al.  SiZer analysis for the comparison of regression curves , 2008, Comput. Stat. Data Anal..

[30]  M. D. Martínez-Miranda,et al.  A Bootstrap Local Bandwidth Selector for Additive Models , 2008 .

[31]  Runze Li,et al.  Local Likelihood SiZer Map , 2005 .

[32]  Jianhua Z. Huang,et al.  Polynomial Spline Estimation and Inference for Varying Coefficient Models with Longitudinal Data , 2003 .

[33]  Wenyang Zhang,et al.  A semiparametric multilevel survival model , 2004 .

[34]  Chin-Tsang Chiang,et al.  Smoothing Spline Estimation for Varying Coefficient Models With Repeatedly Measured Dependent Variables , 2001 .

[35]  James Stephen Marron,et al.  SiZer for length biased, censored density and hazard estimation , 2004 .

[36]  Wenyang Zhang,et al.  Simultaneous confidence band and hypothesis test in generalised varying-coefficient models , 2010, J. Multivar. Anal..

[37]  Jianwen Cai,et al.  Partially Linear Hazard Regression for Multivariate Survival Data , 2007 .

[38]  B. Noon,et al.  Using SiZer to detect thresholds in ecological data , 2009 .

[39]  Fred Godtliebsen,et al.  Bayesian multiscale analysis for time series data , 2006, Comput. Stat. Data Anal..

[40]  J. S. Marron,et al.  SiZer for time series: A new approach to the analysis of trends , 2007, 0706.4190.

[41]  Jianqing Fan,et al.  Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models , 2000 .

[42]  Jianhua Z. Huang,et al.  Varying‐coefficient models and basis function approximations for the analysis of repeated measurements , 2002 .

[43]  J. S. Marron,et al.  Long-range dependence in a changing Internet traffic mix , 2005, Comput. Networks.

[44]  Fred Godtliebsen,et al.  A visual display device for significant features in complicated signals , 2005, Comput. Stat. Data Anal..