Electrochemistry provides a simple way to monitor Pseudomonas aeruginosa metabolites

Pseudomonas aeruginosa is one of the most common bacteria responsible for nosocomial infections. To imagine new therapies, understanding virulence mechanisms and the associated communication system of the bacterium (its quorum sensing) is a target of the first importance. Electrochemistry is a promising tool for real-time in situ monitoring of electroactive species issued from P. aeruginosa communication system. This contribution deals with the electrochemical characterization of the main bacteria electroactive metabolites: Pseudomonas Quinolone Signal, pyocyanin and 2'-aminoacetophenone. These metabolites were electrochemically characterized and further detected in supernatant of P. aeruginosa PA01 strain grown in LB medium.

[1]  Robert B. Smith,et al.  Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection. , 2010, Bioelectrochemistry.

[2]  Edgar D. Goluch,et al.  Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin. , 2014, Biosensors & bioelectronics.

[3]  W. Lövenich,et al.  PEDOT: Principles and Applications of an Intrinsically Conductive Polymer , 2010 .

[4]  Eric Déziel,et al.  The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing‐regulated genes are modulated without affecting lasRI, rhlRI or the production of N‐acyl‐ l‐homoserine lactones , 2004, Molecular microbiology.

[5]  Max Schobert,et al.  SpoT-Triggered Stringent Response Controls usp Gene Expression in Pseudomonas aeruginosa , 2008, Journal of bacteriology.

[6]  Lital Alfonta,et al.  Electrochemical analysis of quorum sensing inhibition. , 2009, Chemical communications.

[7]  John H T Luong,et al.  Detection of the Pseudomonas Quinolone Signal (PQS) by cyclic voltammetry and amperometry using a boron doped diamond electrode. , 2011, Chemical communications.

[8]  L. Michaelis,et al.  POTENTIOMETRIC STUDY OF PYOCYANINE , 1931 .

[9]  R. Tompkins,et al.  The Quorum Sensing Volatile Molecule 2-Amino Acetophenon Modulates Host Immune Responses in a Manner that Promotes Life with Unwanted Guests , 2012, PLoS pathogens.

[10]  Jonathan P. Metters,et al.  Electrochemistry provides a point-of-care approach for the marker indicative of Pseudomonas aeruginosa infection of cystic fibrosis patients. , 2014, The Analyst.

[11]  L. Rahme,et al.  A Quorum Sensing Regulated Small Volatile Molecule Reduces Acute Virulence and Promotes Chronic Infection Phenotypes , 2011, PLoS pathogens.

[12]  Kenneth L. Shepard,et al.  Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms , 2014, Nature Communications.

[13]  L. Rahme,et al.  A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. , 2003, Biochimica et biophysica acta.

[14]  S. Diggle,et al.  The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density‐dependency of the quorum sensing hierarchy, regulates rhl‐dependent genes at the onset of stationary phase and can be produced in the absence of LasR , 2003, Molecular microbiology.