Efficient Bayesian inference of fully stochastic epidemiological models with applications to COVID-19

Epidemiological forecasts are beset by uncertainties about the underlying epidemiological processes, and the surveillance process through which data are acquired. We present a Bayesian inference methodology that quantifies these uncertainties, for epidemics that are modelled by (possibly) non-stationary, continuous-time, Markov population processes. The efficiency of the method derives from a functional central limit theorem approximation of the likelihood, valid for large populations. We demonstrate the methodology by analysing the early stages of the COVID-19 pandemic in the UK, based on age-structured data for the number of deaths. This includes maximum a posteriori estimates, Markov chain Monte Carlo sampling of the posterior, computation of the model evidence, and the determination of parameter sensitivities via the Fisher information matrix. Our methodology is implemented in PyRoss, an open-source platform for analysis of epidemiological compartment models.

[1]  M. Cevik,et al.  SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis , 2020, The Lancet Microbe.

[2]  D. Wilkinson,et al.  Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation , 2005, Biometrics.

[3]  M. Lipsitch,et al.  Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period , 2020, Science.

[4]  George H. Weiss,et al.  A large population approach to estimation of parameters in Markov population models , 1977 .

[5]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[6]  M. Sobel,et al.  Sociological Methodology - 2001 , 2001 .

[7]  Theodore Kypraios,et al.  Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes , 2016, Biostatistics.

[8]  Lauren H. K. Chappell,et al.  Key questions for modelling COVID-19 exit strategies , 2020, Proceedings of the Royal Society B.

[9]  E L Ionides,et al.  Inference for nonlinear dynamical systems , 2006, Proceedings of the National Academy of Sciences.

[10]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[11]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[12]  M. Keeling,et al.  Modeling Infectious Diseases in Humans and Animals , 2007 .

[13]  L. Goddard Information Theory , 1962, Nature.

[14]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[15]  Alexander Grey,et al.  The Mathematical Theory of Infectious Diseases and Its Applications , 1977 .

[16]  P. Alam ‘K’ , 2021, Composites Engineering.

[17]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[18]  Theodore Kypraios,et al.  A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation. , 2017, Mathematical biosciences.

[19]  A. Raftery Bayesian Model Selection in Social Research , 1995 .

[20]  N. G. Davies,et al.  Age-dependent effects in the transmission and control of COVID-19 epidemics , 2020, Nature Medicine.

[21]  D. De Angelis,et al.  Reconstructing a spatially heterogeneous epidemic: Characterising the geographic spread of 2009 A/H1N1pdm infection in England , 2016, Scientific Reports.

[22]  Saul C. Leite,et al.  A constrained Langevin approximation for chemical reaction networks , 2019, The Annals of Applied Probability.

[23]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[24]  STAT , 2019, Springer Reference Medizin.

[25]  L. M. M.-T. Theory of Probability , 1929, Nature.

[26]  J. Kingman Markov population processes , 1969, Journal of Applied Probability.

[27]  Alessandro Vespignani,et al.  Inferring the Structure of Social Contacts from Demographic Data in the Analysis of Infectious Diseases Spread , 2012, PLoS Comput. Biol..

[28]  Pejman Rohani,et al.  Avoidable errors in the modelling of outbreaks of emerging pathogens, with special reference to Ebola , 2014, Proceedings of the Royal Society B: Biological Sciences.

[29]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[30]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[31]  王丹,et al.  Plos Computational Biology主编关于论文获得发表的10条简单法则的评析 , 2009 .

[32]  N. G. Davies,et al.  Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study , 2020, The Lancet Public Health.

[33]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[34]  Mark Jit,et al.  Projecting social contact matrices in 152 countries using contact surveys and demographic data , 2017, PLoS Comput. Biol..

[35]  O Diekmann,et al.  The construction of next-generation matrices for compartmental epidemic models , 2010, Journal of The Royal Society Interface.

[36]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[37]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[38]  Marc Baguelin,et al.  Contemporary statistical inference for infectious disease models using Stan. , 2019, Epidemics.

[39]  Linda R Petzold,et al.  Efficient step size selection for the tau-leaping simulation method. , 2006, The Journal of chemical physics.

[40]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[41]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[42]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[43]  B. M. Fulk MATH , 1992 .

[44]  M. Keeling,et al.  Precautionary breaks: Planned, limited duration circuit breaks to control the prevalence of SARS-CoV2 and the burden of COVID-19 disease , 2020, Epidemics.

[45]  J V Ross,et al.  On parameter estimation in population models. , 2006, Theoretical population biology.

[46]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[47]  C. Gardiner Stochastic Methods: A Handbook for the Natural and Social Sciences , 2009 .

[48]  P K Pollett,et al.  On parameter estimation in population models II: multi-dimensional processes and transient dynamics. , 2009, Theoretical population biology.

[49]  Thomas House,et al.  Gaussian process approximations for fast inference from infectious disease data. , 2018, Mathematical biosciences.

[50]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[51]  Stan Zachary,et al.  Modelling under-reporting in epidemics , 2014, Journal of mathematical biology.

[52]  M. Keeling,et al.  Predictions of COVID-19 dynamics in the UK: Short-term forecasting and analysis of potential exit strategies , 2020, medRxiv.

[53]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[54]  T. Kurtz Approximation of Population Processes , 1987 .

[55]  Adeel Razi,et al.  Dynamic causal modelling of COVID-19. , 2020, Wellcome open research.

[56]  Michael P H Stumpf,et al.  A general moment expansion method for stochastic kinetic models. , 2013, The Journal of chemical physics.

[57]  Darren J. Wilkinson,et al.  Fast Bayesian parameter estimation for stochastic logistic growth models , 2013, Biosyst..

[58]  Yiu Chung Lau,et al.  Temporal dynamics in viral shedding and transmissibility of COVID-19 , 2020, Nature Medicine.

[59]  Paul D. Feigin,et al.  Maximum likelihood estimation for continuous-time stochastic processes , 1976, Advances in Applied Probability.

[60]  N. Ling The Mathematical Theory of Infectious Diseases and its applications , 1978 .

[61]  R. Mikolajczyk,et al.  Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases , 2008, PLoS medicine.

[62]  C. Whittaker,et al.  Estimates of the severity of coronavirus disease 2019: a model-based analysis , 2020, The Lancet Infectious Diseases.

[63]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[64]  T. Kurtz The Relationship between Stochastic and Deterministic Models for Chemical Reactions , 1972 .

[65]  R. Adhikari,et al.  Age-structured impact of social distancing on the COVID-19 epidemic in India , 2020, 2003.12055.

[66]  P. Kaye Infectious diseases of humans: Dynamics and control , 1993 .

[67]  John H. Seinfeld,et al.  Stochastic sensitivity analysis in chemical kinetics , 1981 .

[68]  Carl A. B. Pearson,et al.  The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study , 2020, The Lancet Public Health.

[69]  Hideki Kobayashi,et al.  Inference, prediction and optimization of non-pharmaceutical interventions using compartment models: the PyRoss library , 2020, 2005.09625.

[70]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[71]  Yang Cao,et al.  Sensitivity analysis of discrete stochastic systems. , 2005, Biophysical journal.

[72]  G. Roberts,et al.  Bayesian inference for partially observed stochastic epidemics , 1999 .

[73]  Stewart T. Chang,et al.  Covasim: An agent-based model of COVID-19 dynamics and interventions , 2020, medRxiv.

[74]  Xiaoguang Xu,et al.  Bayesian nonparametric inference for stochastic epidemic models , 2015 .

[75]  Edward L. Ionides,et al.  Plug-and-play inference for disease dynamics: measles in large and small populations as a case study , 2009, Journal of The Royal Society Interface.

[76]  J. Elf,et al.  Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. , 2003, Genome research.

[77]  William F. Bankes,et al.  Bayesian inference across multiple models suggests a strong increase in lethality of COVID-19 in late 2020 in the UK , 2021, medRxiv.

[78]  S. Merler,et al.  Epidemiological characteristics of COVID-19 cases in Italy and estimates of the reproductive numbers one month into the epidemic , 2020, medRxiv.