In silico identification software (ISIS): a machine learning approach to tandem mass spectral identification of lipids

MOTIVATION Liquid chromatography-mass spectrometry-based metabolomics has gained importance in the life sciences, yet it is not supported by software tools for high throughput identification of metabolites based on their fragmentation spectra. An algorithm (ISIS: in silico identification software) and its implementation are presented and show great promise in generating in silico spectra of lipids for the purpose of structural identification. Instead of using chemical reaction rate equations or rules-based fragmentation libraries, the algorithm uses machine learning to find accurate bond cleavage rates in a mass spectrometer employing collision-induced dissociation tandem mass spectrometry. RESULTS A preliminary test of the algorithm with 45 lipids from a subset of lipid classes shows both high sensitivity and specificity.

[1]  E. De Pauw,et al.  Internal energy and fragmentation of ions produced in electrospray sources. , 2005, Mass spectrometry reviews.

[2]  Richard D Smith,et al.  Omics.pnl.gov: A Portal for the Distribution and Sharing of Multi-Disciplinary Pan-Omics Information. , 2010, Journal of proteomics & bioinformatics.

[3]  W. J. Dyer,et al.  A rapid method of total lipid extraction and purification. , 1959, Canadian journal of biochemistry and physiology.

[4]  A. Jansen Monte Carlo simulations of temperature-programmed desorption spectra , 2004 .

[5]  References , 1971 .

[6]  Scott A. McLuckey,et al.  Slow Heating Methods in Tandem Mass Spectrometry , 1997 .

[7]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[8]  Drahos,et al.  Thermal energy distribution observed in electrospray ionization , 1999, Journal of mass spectrometry : JMS.

[9]  Yves Gimbert,et al.  Internal energy distribution in electrospray ionization. , 2005, Journal of mass spectrometry : JMS.

[10]  R. Marcus Unimolecular dissociations and free radical recombination reactions , 1952 .

[11]  Maurice Bruynooghe,et al.  An Efficiently Computable Graph-Based Metric for the Classification of Small Molecules , 2008, Discovery Science.

[12]  J. Futrell,et al.  Tandem mass spectrometry: dissociation of ions by collisional activation , 2000, Journal of mass spectrometry : JMS.

[13]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[14]  Scott A. McLuckey,et al.  SPECIAL FEATURE:TUTORIAL Slow Heating Methods in Tandem Mass Spectrometry , 1997 .

[15]  James L. McClelland,et al.  James L. McClelland, David Rumelhart and the PDP Research Group, Parallel distributed processing: explorations in the microstructure of cognition . Vol. 1. Foundations . Vol. 2. Psychological and biological models . Cambridge MA: M.I.T. Press, 1987. , 1989, Journal of Child Language.

[16]  W. Pearson,et al.  Current Protocols in Bioinformatics , 2002 .

[17]  Michael Karas,et al.  Calibration of ion effective temperatures achieved by resonant activation in a quadrupole ion trap. , 2003, Analytical chemistry.

[18]  Károly Vékey,et al.  Internal Energy Effects in Mass Spectrometry , 1996 .

[19]  W M Young,et al.  Monte Carlo studies of vacancy migration in binary ordered alloys: I , 1966 .

[20]  R. Abagyan,et al.  METLIN: A Metabolite Mass Spectral Database , 2005, Therapeutic drug monitoring.

[21]  Julia Laskin,et al.  Internal energy distributions resulting from sustained off-resonance excitation in FTMS. I. Fragmentation of the bromobenzene radical cation , 2000 .

[22]  M. Kanehisa,et al.  Using the KEGG Database Resource , 2005, Current protocols in bioinformatics.

[23]  László Drahos,et al.  Determination of the thermal energy and its distribution in peptides , 1999 .

[24]  Judit Sztáray,et al.  Modeling the Dissociation of Protonated Ions , 2009 .

[25]  Paul J. Werbos,et al.  The roots of backpropagation , 1994 .

[26]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[27]  M. Kanehisa,et al.  Using the KEGG Database Resource , 2005, Current protocols in bioinformatics.

[28]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[29]  R. Friedman,et al.  Mass spectral metabonomics beyond elemental formula: chemical database querying by matching experimental with computational fragmentation spectra. , 2008, Analytical chemistry.

[30]  Steffen Neumann,et al.  Database supported candidate search for Metabolite identification , 2011, J. Integr. Bioinform..

[31]  H. Eyring,et al.  Absolute Rate Theory for Isolated Systems and the Mass Spectra of Polyatomic Molecules. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Matthias Müller-Hannemann,et al.  In silico fragmentation for computer assisted identification of metabolite mass spectra , 2010, BMC Bioinformatics.

[33]  W. H. Weinberg,et al.  Theoretical foundations of dynamical Monte Carlo simulations , 1991 .

[34]  Qibin Zhang,et al.  The future of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discovery. , 2007, Biomarkers in medicine.

[36]  Zhongqi Zhang Prediction of low-energy collision-induced dissociation spectra of peptides. , 2004, Analytical chemistry.

[37]  J. Folch,et al.  A simple method for the isolation and purification of total lipides from animal tissues. , 1957, The Journal of biological chemistry.

[38]  Á. Ravelo,et al.  Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. , 2008, Journal of agricultural and food chemistry.

[39]  M. Senko,et al.  Automated strategies for obtaining standardized collisionally induced dissociation spectra on a benchtop ion trap mass spectrometer , 1999 .

[40]  H. Schlegel,et al.  A REASSESSMENT OF THE BOND DISSOCIATION ENERGIES OF PEROXIDES. AN AB INITIO STUDY , 1996 .

[41]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[42]  Dietrich A Volmer,et al.  Ion activation methods for tandem mass spectrometry. , 2004, Journal of mass spectrometry : JMS.

[43]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[44]  Yves Gimbert,et al.  Internal energy distribution of peptides in electrospray ionization : ESI and collision-induced dissociation spectra calculation. , 2008, Journal of mass spectrometry : JMS.

[45]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.