Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions

With the help of two photonic controlled-NOT gates, a three-logical-qubit concatenated Greenberger–Horne–Zeilinger (C-GHZ) state encoded by a six-photon graph state is experimentally created. Observation of the dynamics of distillability evolving under a collective noisy environment revealed that the C-GHZ state is more robust than the conventional GHZ state.

[1]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[2]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[3]  Holger F Hofmann Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations. , 2005, Physical review letters.

[4]  H. Weinfurter,et al.  Linear optics controlled-phase gate made simple. , 2005, Physical Review Letters.

[5]  Keiji Sasaki,et al.  Demonstration of an optical quantum controlled-NOT gate without path interference. , 2005, Physical review letters.

[6]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[7]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[8]  W Dür,et al.  Stability of macroscopic entanglement under decoherence. , 2004, Physical review letters.

[9]  Jian-Wei Pan,et al.  Toolbox for entanglement detection and fidelity estimation , 2007, 0706.2432.

[10]  J. Cirac,et al.  Effective size of certain macroscopic quantum superpositions. , 2002, Physical review letters.

[11]  Cheng-Zhi Peng,et al.  Observation of eight-photon entanglement , 2011, Nature Photonics.

[12]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[13]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[14]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[15]  W Dür,et al.  Stable macroscopic quantum superpositions. , 2011, Physical review letters.

[16]  T. Rudolph,et al.  How good must single photon sources and detectors be for efficient linear optical quantum computation? , 2007, Physical review letters.

[17]  H. Briegel,et al.  Experimental demonstration of five-photon entanglement and open-destination teleportation , 2004, Nature.

[18]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[19]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[20]  R. Chaves,et al.  Scaling laws for the decay of multiqubit entanglement. , 2008, Physical review letters.

[21]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[22]  J. Cirac,et al.  Separability and Distillability of Multiparticle Quantum Systems , 1999, quant-ph/9903018.

[23]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[24]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[25]  Shigeki Takeuchi,et al.  Quantum phase gate for photonic qubits using only beam splitters and postselection , 2001, quant-ph/0111092.

[26]  Christian Kurtsiefer,et al.  Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.

[27]  K J Resch,et al.  Demonstration of a simple entangling optical gate and its use in bell-state analysis. , 2005, Physical review letters.

[28]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.