iARM - an interactive video retrieval system

This work presents the iARM system for content-based video retrieval in an interactive framework. This system explores a new model-based video indexing technique to improve the effectiveness of relevance feedback and make interactive video retrieval a user-friendly environment. The system emphasizes the accuracy in modeling spatio-temporal information in a video clip, so that relevance feedback analysis needs only a few cycles and a few training samples, which greatly reduce the search time for video transmissions over the network. We investigate the resilience of the system, and apply the interactive content-based retrieval method to an automatically indexed database of 20 hours of video.

[1]  Stefanos D. Kollias,et al.  A neural network approach to interactive content-based retrieval of video databases , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[2]  Eugenio Di Sciascio,et al.  DrawSearch: a tool for interactive content-based image retrieval over the Internet , 1998, Electronic Imaging.

[3]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[4]  John R. Smith,et al.  Interactive content-based retrieval of video , 2002, Proceedings. International Conference on Image Processing.

[5]  Shih-Fu Chang,et al.  Perceptual knowledge construction from annotated image collections , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[6]  Wei Xiong,et al.  Query by video clip , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[7]  Milind R. Naphade,et al.  Audio-visual query and retrieval: A system that uses dynamic programming and relevance feedback , 2001, J. Electronic Imaging.

[8]  Erkki Oja,et al.  PicSOM-self-organizing image retrieval with MPEG-7 content descriptors , 2002, IEEE Trans. Neural Networks.

[9]  Sang Uk Lee,et al.  Efficient video indexing scheme for content-based retrieval , 1999, IEEE Trans. Circuits Syst. Video Technol..

[10]  Teuvo Kohonen,et al.  In: Self-organising Maps , 1995 .

[11]  T. S. Huang,et al.  Exploring the nature and variants of relevance feedback , 2001, Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL 2001).