AC0∘MOD2 lower bounds for the Boolean Inner Product

Abstract AC 0 ∘ MOD 2 circuits are AC 0 circuits augmented with a layer of parity gates just above the input layer. We study AC 0 ∘ MOD 2 circuit lower bounds for computing the Boolean Inner Product functions. Recent works by Servedio and Viola (ECCC TR12-144) and Akavia et al. (ITCS 2014) have highlighted this problem as a frontier problem in circuit complexity that arose both as a first step towards solving natural special cases of the matrix rigidity problem and as a candidate for constructing pseudorandom generators of minimal complexity. We give the first superlinear lower bound for the Boolean Inner Product function against AC 0 ∘ MOD 2 of depth four or greater. Specifically, we prove a superlinear lower bound for circuits of arbitrary constant depth, and an Ω ˜ ( n 2 ) lower bound for the special case of depth-4 AC 0 ∘ MOD 2 .

[1]  Jaikumar Radhakrishnan,et al.  Deterministic restrictions in circuit complexity , 1996, STOC '96.

[2]  Jeffrey C. Jackson An Efficient Membership-Query Algorithm for Learning DNF with Respect to the Uniform Distribution , 1997, J. Comput. Syst. Sci..

[3]  T. J. Rivlin Chebyshev polynomials : from approximation theory to algebra and number theory , 1990 .

[4]  Swastik Kopparty,et al.  Certifying polynomials for AC^0(parity) circuits, with applications , 2012, FSTTCS.

[5]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 2005, computational complexity.

[6]  Christopher Umans Pseudo-random generators for all hardnesses , 2002, STOC '02.

[7]  Noam Nisan,et al.  Hardness vs Randomness , 1994, J. Comput. Syst. Sci..

[8]  Christopher Umans,et al.  Simple extractors for all min-entropies and a new pseudorandom generator , 2005, JACM.

[9]  Pravesh Kothari,et al.  Constructing Hard Functions Using Learning Algorithms , 2013, 2013 IEEE Conference on Computational Complexity.

[10]  Lance Fortnow,et al.  Efficient learning algorithms yield circuit lower bounds , 2009, J. Comput. Syst. Sci..

[11]  Ilya Volkovich On Learning, Lower Bounds and (un)Keeping Promises , 2014, ICALP.

[12]  Noam Nisan,et al.  Pseudorandom bits for constant depth circuits , 1991, Comb..

[13]  Avi Wigderson,et al.  Reducing The Seed Length In The Nisan-Wigderson Generator* , 2006, Comb..

[14]  Noam Nisan,et al.  Approximate Inclusion-Exclusion , 1990, Comb..

[15]  Raghu Meka,et al.  Moment-Matching Polynomials , 2013, Electron. Colloquium Comput. Complex..

[16]  Stasys Jukna,et al.  On Graph Complexity , 2006, Combinatorics, Probability and Computing.

[17]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1993, JACM.

[18]  Rocco A. Servedio,et al.  On a special case of rigidity , 2012, Electron. Colloquium Comput. Complex..

[19]  Ramamohan Paturi,et al.  On the degree of polynomials that approximate symmetric Boolean functions (preliminary version) , 1992, STOC '92.

[20]  A. Razborov Lower bounds on the size of bounded depth circuits over a complete basis with logical addition , 1987 .

[21]  Gil Cohen,et al.  The Complexity of DNF of Parities , 2016, Electron. Colloquium Comput. Complex..

[22]  Leslie G. Valiant,et al.  Graph-Theoretic Arguments in Low-Level Complexity , 1977, MFCS.

[23]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[24]  Emanuele Viola,et al.  Hardness Amplification Proofs Require Majority , 2010, SIAM J. Comput..

[25]  Pavel Pudlák,et al.  Threshold circuits of bounded depth , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[26]  Dana Ron,et al.  Strong Lower Bounds for Approximating Distribution Support Size and the Distinct Elements Problem , 2009, SIAM J. Comput..

[27]  Alon Rosen,et al.  Candidate weak pseudorandom functions in AC0 ○ MOD2 , 2014, ITCS.