Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces

The moving least square (MLS) approximation is one of the most important methods to construct approximation functions in meshless methods. For the error analysis of the MLS-based meshless methods it is fundamental to have error estimates of the MLS approximation in the generic n-dimensional Sobolev spaces. In this paper, error estimates for the MLS approximation are obtained in the W k , p norm in arbitrary n dimensions when weight functions satisfy certain conditions. The element-free Galerkin (EFG) method is a typical Galerkin method combined with the use of the MLS approximation. The error results of the MLS approximation are then used to yield error estimates of the EFG method for solving both Neumann and Dirichlet boundary value problems. Finally, some numerical examples are given to confirm the theoretical analysis.

[1]  Weimin Han,et al.  Error analysis of the reproducing kernel particle method , 2001 .

[2]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[3]  Xiaolin Li The meshless Galerkin boundary node method for Stokes problems in three dimensions , 2011 .

[4]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[5]  Carlos Zuppa,et al.  Jackson-type inequalities for h–p clouds and error estimates , 2005 .

[6]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[7]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[8]  M. G. Armentano,et al.  Error Estimates in Sobolev Spaces for Moving Least Square Approximations , 2001, SIAM J. Numer. Anal..

[9]  Xiaolin Li,et al.  Meshless Galerkin algorithms for boundary integral equations with moving least square approximations , 2011 .

[10]  Jufeng Wang,et al.  Error estimates for the interpolating moving least-squares method , 2014, Appl. Math. Comput..

[11]  R. Schaback,et al.  On generalized moving least squares and diffuse derivatives , 2012 .

[12]  Rüdiger Verfürth,et al.  A note on polynomial approximation in Sobolev spaces , 1999 .

[13]  Xiaolin Li,et al.  Meshless boundary node methods for Stokes problems , 2015 .

[14]  Satya N. Atluri,et al.  A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method , 1998 .

[15]  Xiaolin Li,et al.  A Galerkin boundary node method and its convergence analysis , 2009 .

[16]  S. Atluri The meshless method (MLPG) for domain & BIE discretizations , 2004 .

[17]  Liping Wang,et al.  Error analysis for moving least squares approximation in 2D space , 2014, Appl. Math. Comput..

[18]  Mehdi Dehghan,et al.  A moving least square reproducing polynomial meshless method , 2013 .

[19]  Xiaolin Li,et al.  Implementation of boundary conditions in BIEs-based meshless methods: A dual boundary node method , 2014 .

[20]  Rudolf Scitovski,et al.  Approximating surfaces by moving total least squares method , 1998, Appl. Math. Comput..

[21]  I. Babuska,et al.  On locking and robustness in the finite element method , 1992 .

[22]  D. Mirzaei A meshless based method for solution of integral equations , 2010, 1508.07539.

[23]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[24]  Ameneh Taleei,et al.  Direct meshless local Petrov-Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic , 2014 .

[25]  Mehdi Dehghan,et al.  Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation , 2010 .

[26]  Davoud Mirzaei,et al.  Analysis of moving least squares approximation revisited , 2015, J. Comput. Appl. Math..

[27]  Ricardo G. Durán,et al.  Error estimates for moving least square approximations , 2001 .

[28]  Mehdi Dehghan,et al.  A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains , 2014, Numerical Algorithms.

[29]  J. Z. Zhu,et al.  The finite element method , 1977 .

[30]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[31]  Rüdiger Verfürth A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..

[32]  Ted Belytschko,et al.  Analysis of thin plates by the element-free Galerkin method , 1995 .

[33]  Mehdi Dehghan,et al.  A generalized moving least square reproducing kernel method , 2013, J. Comput. Appl. Math..

[34]  Yumin Cheng,et al.  Error estimates for the finite point method , 2008 .

[35]  Ted Belytschko,et al.  A curvilinear spectral overlay method for high gradient problems , 1992 .

[36]  Mehdi Dehghan,et al.  Numerical Solution of System of N–Coupled NonlinearSchrödinger Equations via Two Variants of the MeshlessLocal Petrov–Galerkin (MLPG) Method , 2014 .

[37]  Subrata Mukherjee,et al.  Boundary Methods: Elements, Contours, and Nodes , 2005 .

[38]  Carlos Zuppa,et al.  Error estimates for moving least square approximations , 2003 .

[39]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[40]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[41]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[42]  C. Zuppa Good quality point sets and error estimates for moving least square approximations , 2003 .

[43]  S. Mukherjee,et al.  THE BOUNDARY NODE METHOD FOR POTENTIAL PROBLEMS , 1997 .

[44]  Frank Zeilfelder,et al.  Scattered Data Fitting by Direct Extension of Local Polynomials to Bivariate Splines , 2004, Adv. Comput. Math..

[45]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .