Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling

Interfacial thermal transport between offset parallel (10,10) single-wall carbon nanotubes is investigated by molecular dynamics simulation and analytical thermal modeling as a function of nanotube spacing, overlap, and length. A four order of magnitude reduction in interfacial thermal resistance is found as the nanotubes are brought into intimate contact. A reduction is also found for longer nanotubes and for nanotubes with increased overlap area. Thermal resistance between a nanotube and a reservoir at its boundary increases with decreasing reservoir temperature. Additionally, length-dependent Young's moduli and damping coefficients are calculated based on observed nanotube deflections.

[1]  H. Dai,et al.  Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes , 2001 .

[2]  Clifford W. Padgett,et al.  Influence of Chemisorption on the Thermal Conductivity of Single-Wall Carbon Nanotubes , 2004 .

[3]  Baowen Li,et al.  Thermal conduction of carbon nanotubes using molecular dynamics , 2005 .

[4]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[5]  Michael L. Roukes,et al.  Intrinsic dissipation in high-frequency micromechanical resonators , 2002 .

[6]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.

[7]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[8]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[9]  Scott T. Huxtable,et al.  Interfacial heat flow in carbon nanotube suspensions , 2003, Nature materials.

[10]  J. B. Wang,et al.  Predicting the elastic properties of single-walled carbon nanotubes , 2005 .

[11]  Donald W. Brenner,et al.  Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations , 1998 .

[12]  S. Maruyama A MOLECULAR DYNAMICS SIMULATION OF HEAT CONDUCTION OF A FINITE LENGTH SINGLE-WALLED CARBON NANOTUBE , 2003 .

[13]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998 .

[14]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[15]  A. M. Rao,et al.  Large-scale purification of single-wall carbon nanotubes: process, product, and characterization , 1998 .

[16]  R. Keyes Laws of Corresponding States for the Thermal Conductivity of Molecular Solids , 1959 .

[17]  Tsu-Wei Chou,et al.  Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces , 2003 .

[18]  Huajian Gao,et al.  The effect of nanotube radius on the constitutive model for carbon nanotubes , 2003 .

[19]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[20]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[21]  Haibing Peng,et al.  Patterned growth of single-walled carbon nanotube arrays from a vapor-deposited Fe catalyst , 2003 .

[22]  P. Keblinski,et al.  Thermal expansion of carbon structures , 2003 .

[23]  P Jarillo-Herrero,et al.  Tunneling in suspended carbon nanotubes assisted by longitudinal phonons. , 2006, Physical review letters.

[24]  Wei Zhou,et al.  Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity , 2004 .

[25]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[26]  A. Majumdar,et al.  Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization , 2001 .

[27]  H. Wagner,et al.  Evaluation of Young’s Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy , 1998 .

[28]  F. Yuan,et al.  Simulation of elastic properties of single-walled carbon nanotubes , 2003 .

[29]  C. L. Tien,et al.  Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity , 1998, Heat Transfer.

[30]  Mohamed A. Osman,et al.  Temperature dependence of the thermal conductivity of single-wall carbon nanotubes , 2001 .

[31]  G. Garberoglio,et al.  Quantum sieving in single-walled carbon nanotubes: effect of interaction potential and rotational-translational coupling. , 2006, The journal of physical chemistry. B.

[32]  A. Rubio,et al.  Elastic properties of single-wall nanotubes , 1999 .

[33]  Quantized phonon spectrum of single-wall carbon nanotubes , 2000, Science.

[34]  J. Loos,et al.  Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging. , 2005, Ultramicroscopy.

[35]  M. Dresselhaus,et al.  Phonons in carbon nanotubes , 2000 .

[36]  J. Lu,et al.  Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[37]  J. Fischer,et al.  Coagulation method for preparing single‐walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability , 2003 .

[38]  A. Majumdar,et al.  Thermal conductance and thermopower of an individual single-wall carbon nanotube. , 2005, Nano letters.

[39]  Pawel Keblinski,et al.  Role of thermal boundary resistance on the heat flow in carbon-nanotube composites , 2004 .

[40]  J. F. Moreland,et al.  THE DISPARATE THERMAL CONDUCTIVITY OF CARBON NANOTUBES AND DIAMOND NANOWIRES STUDIED BY ATOMISTIC SIMULATION , 2004 .

[41]  M. Hodak,et al.  Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential , 2000 .

[42]  N. Mingo,et al.  Length dependence of carbon nanotube thermal conductivity and the "problem of long waves". , 2005, Nano letters.

[43]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[44]  Dong Qian,et al.  Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements , 2003 .

[45]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[46]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[47]  Chengkuo Lee,et al.  Characterization of micromachined piezoelectric PZT force sensors for dynamic scanning force microscopy , 1997 .

[48]  Stephen K. Gray,et al.  Quantum States of Molecular Hydrogen and Its Isotopes in Single-Walled Carbon Nanotubes , 2003 .

[49]  Petros Koumoutsakos,et al.  Carbon nanotubes in water:structural characteristics and energetics , 2001 .

[50]  Dong Qian,et al.  Mechanics of C60 in nanotubes , 2001 .

[51]  Wang,et al.  Stiffness of a solid composed of C60 clusters. , 1991, Physical review. B, Condensed matter.