A high-accuracy Eulerian gyrokinetic solver for collisional plasmas

We describe a new approach to solve the electromagnetic gyrokinetic equations which is optimized for accurate treatment of multispecies Fokker-Planck collisions including both pitch-angle and energy diffusion. The new algorithm is spectral/pseudospectral in four of the five phase space dimensions, and in the fieldline direction a novel 5th-order conservative upwind scheme is used to permit high-accuracy electromagnetic simulation even in the limit of very high plasma β and vanishingly small perpendicular wavenumber, k ź ź 0 . To our knowledge, this is the first pseudospectral implementation of the collision operator in a gyrokinetic code. We show that the new solver agrees closely with GYRO in the limit of weak Lorentz collisions, but gives a significantly more realistic description of collisions at high collision frequency. The numerical methods are also designed to be efficient and scalable for multiscale simulations that treat ion-scale and electron-scale turbulence simultaneously.

[1]  M. Kruskal,et al.  Equilibrium of a Magnetically Confined Plasma in a Toroid , 1958 .

[2]  Frank Jenko,et al.  The global version of the gyrokinetic turbulence code GENE , 2011, J. Comput. Phys..

[3]  H. Sugama,et al.  Nonlinear electromagnetic gyrokinetic equation for plasmas with large mean flows , 1998 .

[4]  Alain J. Brizard,et al.  Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic co-ordinates , 1989, Journal of Plasma Physics.

[5]  Kristopher L. Kuhlman,et al.  mpmath: a Python library for arbitrary-precision floating-point arithmetic , 2017 .

[6]  J. Greene,et al.  Noncircular, finite aspect ratio, local equilibrium model , 1998 .

[7]  E. M. Gelbard,et al.  Gaussian quadratures for the integrals ₀^{∞}(-²)() and ₀^{}(-²)() , 1969 .

[8]  Jeff M. Candy,et al.  A unified method for operator evaluation in local Grad–Shafranov plasma equilibria , 2009 .

[9]  Steven A. Orszag,et al.  On the Elimination of Aliasing in Finite-Difference Schemes by Filtering High-Wavenumber Components , 1971 .

[10]  R. Waltz,et al.  A gyro-Landau-fluid transport model , 1997 .

[11]  M. Barnes,et al.  Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests , 2008, 0809.3945.

[12]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[13]  Jeff M. Candy,et al.  An Eulerian method for the solution of the multi-species drift-kinetic equation , 2009 .

[14]  Hideo Sugama,et al.  Linearized Model Collision Operators for Multiple Ion Species Plasmas , 2009 .

[15]  Mike Kotschenreuther,et al.  Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities , 1995 .

[16]  M. N. Rosenbluth,et al.  Stability regions of dissipative trapped-ion instability , 1972 .

[17]  M. Barnes,et al.  Linearized model Fokker-Planck collision operators for gyrokinetic simulations. I. Theory , 2008, 0808.1300.

[18]  P. Manas,et al.  Enhanced stabilisation of trapped electron modes by collisional energy scattering in tokamaks , 2015 .

[19]  G. D. Byrne,et al.  Gaussian Quadratures for the Integrals , 2010 .

[20]  F. J. Casson,et al.  The nonlinear gyro-kinetic flux tube code GKW , 2009, Comput. Phys. Commun..

[21]  E. Frieman,et al.  Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria , 1981 .

[22]  R. E. Waltz,et al.  The effect of safety factor and magnetic shear on turbulent transport in nonlinear gyrokinetic simulations , 2006 .

[23]  Marshall N. Rosenbluth,et al.  POLOIDAL FLOW DRIVEN BY ION-TEMPERATURE-GRADIENT TURBULENCE IN TOKAMAKS , 1998 .

[24]  M. Rosenbluth,et al.  Dynamics of axisymmetric and poloidal flows in tokamaks , 1999 .

[25]  R. L. Miller,et al.  Ion temperature gradient turbulence simulations and plasma flux surface shape , 1999 .

[26]  E. A. Belli,et al.  Gyrokinetic Eigenmode Analysis of High-Beta Shaped Plasmas , 2010 .

[27]  Jeff M. Candy,et al.  Tokamak profile prediction using direct gyrokinetic and neoclassical simulation , 2009 .

[28]  W. Gautschi On the construction of Gaussian quadrature rules from modified moments. , 1970 .

[29]  Jeff M. Candy,et al.  Full linearized Fokker–Planck collisions in neoclassical transport simulations , 2011 .

[30]  R. A. Sack,et al.  An algorithm for Gaussian quadrature given modified moments , 1971 .

[31]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .

[32]  Matt Landreman,et al.  New velocity-space discretization for continuum kinetic calculations and Fokker-Planck collisions , 2012, J. Comput. Phys..

[33]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[34]  Frank Jenko,et al.  Electron temperature gradient driven turbulence , 1999 .

[35]  Frank Jenko,et al.  Vlasov simulation of kinetic shear Alfvén waves , 2004, Comput. Phys. Commun..

[36]  D. Durran Numerical methods for wave equations in geophysical fluid dynamics , 1999 .

[37]  F. Jenko,et al.  Electron temperature gradient turbulence. , 2000, Physical review letters.

[38]  R. E. Waltz,et al.  An Eulerian gyrokinetic-Maxwell solver , 2003 .

[39]  J. Candy,et al.  Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics , 2008 .