A high-accuracy Eulerian gyrokinetic solver for collisional plasmas
暂无分享,去创建一个
[1] M. Kruskal,et al. Equilibrium of a Magnetically Confined Plasma in a Toroid , 1958 .
[2] Frank Jenko,et al. The global version of the gyrokinetic turbulence code GENE , 2011, J. Comput. Phys..
[3] H. Sugama,et al. Nonlinear electromagnetic gyrokinetic equation for plasmas with large mean flows , 1998 .
[4] Alain J. Brizard,et al. Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic co-ordinates , 1989, Journal of Plasma Physics.
[5] Kristopher L. Kuhlman,et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic , 2017 .
[6] J. Greene,et al. Noncircular, finite aspect ratio, local equilibrium model , 1998 .
[7] E. M. Gelbard,et al. Gaussian quadratures for the integrals ₀^{∞}(-²)() and ₀^{}(-²)() , 1969 .
[8] Jeff M. Candy,et al. A unified method for operator evaluation in local Grad–Shafranov plasma equilibria , 2009 .
[9] Steven A. Orszag,et al. On the Elimination of Aliasing in Finite-Difference Schemes by Filtering High-Wavenumber Components , 1971 .
[10] R. Waltz,et al. A gyro-Landau-fluid transport model , 1997 .
[11] M. Barnes,et al. Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests , 2008, 0809.3945.
[12] Steven G. Johnson,et al. The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.
[13] Jeff M. Candy,et al. An Eulerian method for the solution of the multi-species drift-kinetic equation , 2009 .
[14] Hideo Sugama,et al. Linearized Model Collision Operators for Multiple Ion Species Plasmas , 2009 .
[15] Mike Kotschenreuther,et al. Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities , 1995 .
[16] M. N. Rosenbluth,et al. Stability regions of dissipative trapped-ion instability , 1972 .
[17] M. Barnes,et al. Linearized model Fokker-Planck collision operators for gyrokinetic simulations. I. Theory , 2008, 0808.1300.
[18] P. Manas,et al. Enhanced stabilisation of trapped electron modes by collisional energy scattering in tokamaks , 2015 .
[19] G. D. Byrne,et al. Gaussian Quadratures for the Integrals , 2010 .
[20] F. J. Casson,et al. The nonlinear gyro-kinetic flux tube code GKW , 2009, Comput. Phys. Commun..
[21] E. Frieman,et al. Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria , 1981 .
[22] R. E. Waltz,et al. The effect of safety factor and magnetic shear on turbulent transport in nonlinear gyrokinetic simulations , 2006 .
[23] Marshall N. Rosenbluth,et al. POLOIDAL FLOW DRIVEN BY ION-TEMPERATURE-GRADIENT TURBULENCE IN TOKAMAKS , 1998 .
[24] M. Rosenbluth,et al. Dynamics of axisymmetric and poloidal flows in tokamaks , 1999 .
[25] R. L. Miller,et al. Ion temperature gradient turbulence simulations and plasma flux surface shape , 1999 .
[26] E. A. Belli,et al. Gyrokinetic Eigenmode Analysis of High-Beta Shaped Plasmas , 2010 .
[27] Jeff M. Candy,et al. Tokamak profile prediction using direct gyrokinetic and neoclassical simulation , 2009 .
[28] W. Gautschi. On the construction of Gaussian quadrature rules from modified moments. , 1970 .
[29] Jeff M. Candy,et al. Full linearized Fokker–Planck collisions in neoclassical transport simulations , 2011 .
[30] R. A. Sack,et al. An algorithm for Gaussian quadrature given modified moments , 1971 .
[31] William M. MacDonald,et al. Fokker-Planck Equation for an Inverse-Square Force , 1957 .
[32] Matt Landreman,et al. New velocity-space discretization for continuum kinetic calculations and Fokker-Planck collisions , 2012, J. Comput. Phys..
[33] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[34] Frank Jenko,et al. Electron temperature gradient driven turbulence , 1999 .
[35] Frank Jenko,et al. Vlasov simulation of kinetic shear Alfvén waves , 2004, Comput. Phys. Commun..
[36] D. Durran. Numerical methods for wave equations in geophysical fluid dynamics , 1999 .
[37] F. Jenko,et al. Electron temperature gradient turbulence. , 2000, Physical review letters.
[38] R. E. Waltz,et al. An Eulerian gyrokinetic-Maxwell solver , 2003 .
[39] J. Candy,et al. Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics , 2008 .