Visualizing human brain surface from T1-weighted MR images using texture-mapped triangle meshes

We describe a novel method for visualizing brain surface from anatomical magnetic resonance images (MRIs). The method utilizes standard 2D texture mapping capabilities of OpenGL graphics language. It combines the benefits of volume rendering and triangle-mesh rendering, allowing fast and realistic-looking brain surface visualizations. Consequently, relatively low-resolution triangle meshes can be used while the texture images provide the necessary details. The mapping is optimized to provide good texture-image resolution for the triangles with respect to their original sizes in the 3D MRI volume. The actual 2D texture images are generated by depth integration from the original MRI data. Our method adapts to anisotropic voxel sizes without any need to interpolate the volume data into cubic voxels, and it is very well suited for visualizing brain anatomy from standard T(1)-weighted MR images. Furthermore, other OpenGL objects and techniques can be easily combined, for example, to use cut planes, to show other surfaces and objects, and to visualize functional data in addition to the anatomical information.

[1]  Kwan-Liu Ma,et al.  A hardware-assisted hybrid rendering technique for interactive volume visualization , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.

[2]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[3]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[4]  Thomas Martin Deserno,et al.  Survey: interpolation methods in medical image processing , 1999, IEEE Transactions on Medical Imaging.

[5]  David A. Rottenberg,et al.  Quasi-Conformally Flat Mapping the Human Cerebellum , 1999, MICCAI.

[6]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[7]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[8]  T. Elbert,et al.  Oscillatory Event-Related Brain Dynamics , 1994, NATO ASI Series.

[9]  Steven Skiena,et al.  Optimizing triangle strips for fast rendering , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[10]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[11]  Marc Alexa,et al.  Recent Advances in Mesh Morphing , 2002, Comput. Graph. Forum.

[12]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[13]  U Tiede,et al.  3-D segmentation of MR images of the head for 3-D display. , 1990, IEEE transactions on medical imaging.

[14]  Marc Levoy,et al.  A hybrid ray tracer for rendering polygon and volume data , 1990, IEEE Computer Graphics and Applications.

[15]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[16]  David P. Dobkin,et al.  A search engine for 3D models , 2003, TOGS.

[17]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[18]  Paul S. Heckbert,et al.  Survey of Texture Mapping , 1986, IEEE Computer Graphics and Applications.

[19]  Anne Verroust-Blondet,et al.  Interactive texture mapping , 1993, SIGGRAPH.

[20]  Arie E. Kaufman,et al.  Hybrid volume and polygon rendering with cube hardware , 1999, Workshop on Graphics Hardware.

[21]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[22]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[23]  James F. Blinn,et al.  Texture and reflection in computer generated images , 1976, CACM.

[24]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[25]  Sameer Singh,et al.  Computer Vision and Pattern Recognition Techniques for 2-D and 3-D MR Cerebral Cortical Segmentation (Part I): A State-of-the-Art Review , 2002, Pattern Analysis & Applications.

[26]  M. Bauer,et al.  Interactive volume on standard PC graphics hardware using multi-textures and multi-stage rasterization , 2000, Workshop on Graphics Hardware.

[27]  Klaus Mueller,et al.  A practical evaluation of popular volume rendering algorithms , 2000, VVS '00.

[28]  Greg Turk,et al.  Texture synthesis on surfaces , 2001, SIGGRAPH.

[29]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[30]  Olaf Dössel,et al.  Possibilities of Functional Brain Imaging Using a Combination of MEG and MRT , 1994 .

[31]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[32]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[33]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[34]  Sameer Singh,et al.  Fusion of Region and Boundary/Surface-Based Computer Vision and Pattern Recognition Techniques for 2-D and 3-D MR Cerebral Cortical Segmentation (Part-II): A State-of-the-Art Review , 2002, Pattern Analysis & Applications.

[35]  K. Hormann,et al.  Hierarchical Parametrization of Triangulated Surfaces , 2002 .

[36]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[37]  T. Lehmann,et al.  Addendum: B-spline interpolation in medical image processing , 2001, IEEE Transactions on Medical Imaging.

[38]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[39]  Andrei Khodakovsky,et al.  Globally smooth parameterizations with low distortion , 2003, ACM Trans. Graph..

[40]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[41]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[42]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[43]  T. Todd Elvins,et al.  A survey of algorithms for volume visualization , 1992, COMG.

[44]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[45]  Kwan-Liu Ma,et al.  Advanced Visualization Technology for Terascale Particle Accelerator Simulations , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[46]  M. Levoy,et al.  Fast volume rendering using a shear-warp factorization of the viewing transformation , 1994, SIGGRAPH.