DyGCN: Dynamic Graph Embedding with Graph Convolutional Network

ZEYU CUI∗, University of Chinese Academy of Sciences (UCAS) Institution of Automation Chinese Academy of Sciences (CASIA) National Laboratory of Pattern Recognition (NLPR) Center for Research on Intelligent Perception and Computing(CRIPAC), China ZEKUN LI∗, School of Cyber Security, University of Chinese Academy of Sciences, China SHU WU, University of Chinese Academy of Sciences (UCAS) Institution of Automation Chinese Academy of Sciences (CASIA) National Laboratory of Pattern Recognition (NLPR) Center for Research on Intelligent Perception and Computing(CRIPAC), China XIAOYU ZHANG, School of Cyber Security, University of Chinese Academy of Sciences, China QIANG LIU and LIANG WANG, University of Chinese Academy of Sciences (UCAS) Institution of Automation Chinese Academy of Sciences (CASIA) National Laboratory of Pattern Recognition (NLPR) Center for Research on Intelligent Perception and Computing(CRIPAC), China MENGMENG AI, the Beijing University of Post and Telecommunication, China

[1]  Jon M. Kleinberg,et al.  Overview of the 2003 KDD Cup , 2003, SKDD.

[2]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[3]  Xing Xie,et al.  Session-based Recommendation with Graph Neural Networks , 2018, AAAI.

[4]  Jian Pei,et al.  TIMERS: Error-Bounded SVD Restart on Dynamic Networks , 2017, AAAI.

[5]  Yan Liu,et al.  DynGEM: Deep Embedding Method for Dynamic Graphs , 2018, ArXiv.

[6]  Han Zhang,et al.  DynWalks: Global Topology and Recent Changes Awareness Dynamic Network Embedding , 2019, ArXiv.

[7]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[8]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[9]  Charles E. Leisersen,et al.  EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs , 2019, AAAI.

[10]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[11]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[12]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[13]  Junjie Wu,et al.  Embedding Temporal Network via Neighborhood Formation , 2018, KDD.

[14]  Jure Leskovec,et al.  {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .

[15]  Zhanxing Zhu,et al.  Spatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting , 2017, IJCAI.

[16]  Huan Liu,et al.  Community evolution in dynamic multi-mode networks , 2008, KDD.

[17]  Mason A. Porter,et al.  Social Structure of Facebook Networks , 2011, ArXiv.

[18]  Wei Zhang,et al.  Dynamic Graph Representation Learning via Self-Attention Networks , 2018, ArXiv.

[19]  Max Welling,et al.  Variational Graph Auto-Encoders , 2016, ArXiv.

[20]  Hongyuan Zha,et al.  DyRep: Learning Representations over Dynamic Graphs , 2019, ICLR.

[21]  S. Yang Overview of , 2020, Modern Digital Radio Communication Signals and Systems.

[22]  Jure Leskovec,et al.  How Powerful are Graph Neural Networks? , 2018, ICLR.

[23]  Charu C. Aggarwal,et al.  NetWalk: A Flexible Deep Embedding Approach for Anomaly Detection in Dynamic Networks , 2018, KDD.

[24]  Xavier Bresson,et al.  Structured Sequence Modeling with Graph Convolutional Recurrent Networks , 2016, ICONIP.

[25]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[26]  Guojie Song,et al.  Dynamic Network Embedding : An Extended Approach for Skip-gram based Network Embedding , 2018, IJCAI.

[27]  Huan Liu,et al.  Attributed Network Embedding for Learning in a Dynamic Environment , 2017, CIKM.

[28]  Abhinav Gupta,et al.  The More You Know: Using Knowledge Graphs for Image Classification , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Yueting Zhuang,et al.  Dynamic Network Embedding by Modeling Triadic Closure Process , 2018, AAAI.

[30]  Kilian Q. Weinberger,et al.  Simplifying Graph Convolutional Networks , 2019, ICML.

[31]  Xiaoyu Zhang,et al.  Dressing as a Whole: Outfit Compatibility Learning Based on Node-wise Graph Neural Networks , 2019, WWW.

[32]  Philip S. Yu,et al.  A Comprehensive Survey on Graph Neural Networks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[33]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[34]  Alessandro Rozza,et al.  Dynamic Graph Convolutional Networks , 2017, Pattern Recognit..

[35]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[36]  F. Scarselli,et al.  A new model for learning in graph domains , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[37]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[38]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[39]  Qiongkai Xu,et al.  GraRep: Learning Graph Representations with Global Structural Information , 2015, CIKM.

[40]  Wenwu Zhu,et al.  Structural Deep Network Embedding , 2016, KDD.

[41]  Zhiyuan Liu,et al.  Graph Neural Networks: A Review of Methods and Applications , 2018, AI Open.

[42]  Gholamreza Haffari,et al.  Graph-to-Sequence Learning using Gated Graph Neural Networks , 2018, ACL.

[43]  Yan Wang,et al.  ProNE: Fast and Scalable Network Representation Learning , 2019, IJCAI.

[44]  Cao Xiao,et al.  FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling , 2018, ICLR.

[45]  Palash Goyal,et al.  dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning , 2018, Knowl. Based Syst..

[46]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.