The Mechanism of Forming H2O from H2 and O2 over a Pt Catalyst via Direct Oxygen Reduction

Density functional theory (DFT) was used with the B3LYP gradient‐corrected exchange–correlation functional to study the mechanism for the reaction of H2 + ${1 \over 2}$ O2 → H2O over a Pt catalyst via direct oxygen reduction.

[1]  P. Balbuena,et al.  Density functional theory study of adsorption of OOH on Pt-based bimetallic clusters alloyed with Cr, Co, and Ni , 2005 .

[2]  W. Goddard,et al.  Chemisorption of (CHx and C2Hy) hydrocarbons on Pt(111) clusters and surfaces from DFT studies. , 2005, The journal of physical chemistry. B.

[3]  W. Goddard,et al.  Chemisorption of atomic oxygen on Pt(1 1 1) and Pt/Ni(1 1 1) surfaces , 2004 .

[4]  William A. Goddard,et al.  Chemisorption of Atomic Oxygen on Pt(111) from DFT Studies of Pt-Clusters , 2003 .

[5]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[6]  A. Wokaun,et al.  Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes , 2002 .

[7]  B. Hammer,et al.  Oxygen dissociation at close-packed Pt terraces, Pt steps, and Ag-covered Pt steps studied with density functional theory , 2002 .

[8]  Junhua Jiang,et al.  Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid , 2002 .

[9]  K. Oguro,et al.  Raney multi-metallic electrodes from regular crystalline and quasi-crystalline precursors: I. Cu-stabilized Ni/Mo cathodes for hydrogen evolution in acid , 2001 .

[10]  Jihoon Cho,et al.  Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications , 2000 .

[11]  J. Hafner,et al.  Precursor-mediated adsorption of oxygen on the (111) surfaces of platinum-group metals , 2000 .

[12]  K. Oguro,et al.  Electrocatalytic synergism in Ni/Mo cathodes for hydrogen evolution in acid medium: a new model , 1999 .

[13]  Xumu Zhang,et al.  Highly Enantioselective Hydrogenation of Cyclic Enol Acetates Catalyzed by a Rh-PennPhos Complex. , 1999, Angewandte Chemie.

[14]  J. Ying,et al.  SYNTHESIS AND APPLICATIONS OF SUPRAMOLECULAR-TEMPLATED MESOPOROUS MATERIALS , 1999 .

[15]  W. Goddard,et al.  Chemisorption of Organics on Platinum. 1. The Interstitial Electron Model , 1998 .

[16]  W. Ho Inducing and Viewing Bond Selected Chemistry with Tunneling Electrons , 1998 .

[17]  Ho,et al.  Inducing and viewing the rotational motion of a single molecule , 1998, Science.

[18]  B. Lundqvist,et al.  Single-Molecule Dissociation by Tunneling Electrons , 1997 .

[19]  W. Erley,et al.  Photochemical reactions of water adsorbed on Pt(111) , 1996 .

[20]  Shimshon Gottesfeld,et al.  Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers , 1995 .

[21]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[22]  Baba,et al.  Bonding, structure, and magnetism of physisorbed and chemisorbed O2 on Pt(111). , 1990, Physical review letters.

[23]  P. Ross,et al.  The Structure and Activity of Pt‐Co Alloys as Oxygen Reduction Electrocatalysts , 1990 .

[24]  B. Koel,et al.  Study of high coverages of atomic oxygen on the Pt(111) surface , 1989 .

[25]  Fowler,et al.  Sequential precursors in dissociative chemisorption: O2 on Pt(111). , 1989, Physical review. B, Condensed matter.

[26]  D. Bethune,et al.  The sticking of O2 on a Pt(111) surface , 1988 .

[27]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[28]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[29]  Ho,et al.  Vibrational spectroscopy of H on Pt(111): Evidence for universally soft parallel modes. , 1987, Physical review. B, Condensed matter.

[30]  J. Glass,et al.  The Effect of Metallurgical Variables on the Electrocatalytic Properties of PtCr Alloys , 1987 .

[31]  Solomon,et al.  Orientation and bond length of molecular oxygen on Ag(110) and Pt(111): A near-edge x-ray-absorption fine-structure study. , 1987, Physical review. B, Condensed matter.

[32]  Goddard,et al.  New concepts of metallic bonding based on valence-bond ideas. , 1985, Physical review letters.

[33]  J. Stöhr,et al.  Bonding and bond lengths of chemisorbed molecules from near-edge X-ray absorption fine-structure studies , 1983 .

[34]  N. R. Avery An EELS and TDS study of molecular oxygen desorption and decomposition on Pt(111) , 1983 .

[35]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[36]  G. Fisher,et al.  Oxygen interactions with the Pt(111) surface , 1980 .

[37]  A. Baró,et al.  Vibrational modes of hydrogen adsorbed on Pt(111): Adsorption site and excitation mechanism , 1979 .

[38]  William A. Goddard,et al.  The generalized valence bond description of O2 , 1975 .

[39]  W. Goddard,et al.  Configuration interaction studies on low‐lying states of O2 , 1975 .

[40]  John C. Slater,et al.  Quantum Theory of Molecules and Solids Vol. 4: The Self‐Consistent Field for Molecules and Solids , 1974 .

[41]  Angelos Michaelides,et al.  A density functional theory study of hydroxyl and the intermediate in the water formation reaction on Pt , 2001 .

[42]  A. Luntz,et al.  Low temperature adsorption of O2 on Pt(111) , 1990 .

[43]  Y. Chabal,et al.  Hydrogen phonon spectra on transition metal surfaces: infrared reflection-absorption investigations of Mo(l00), W(100), and Pt(111) , 1987 .

[44]  John C. Slater,et al.  Quantum Theory of Molecules and Solids , 1951 .

[45]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .