A quasi-finite basis for multi-loop Feynman integrals
暂无分享,去创建一个
[1] E. Panzer. Feynman integrals and hyperlogarithms , 2015, 1506.07243.
[2] A. V. Smirnov,et al. FIRE5: A C++ implementation of Feynman Integral REduction , 2014, Comput. Phys. Commun..
[3] E. Panzer. Feynman integrals via hyperlogarithms , 2014, 1407.0074.
[4] Andreas von Manteuffel,et al. A novel approach to integration by parts reduction , 2014, ArXiv.
[5] Erik Panzer,et al. Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals , 2014, Comput. Phys. Commun..
[6] E. Panzer. On hyperlogarithms and Feynman integrals with divergences and many scales , 2014, 1401.4361.
[7] A. A. Ocampo Rios,et al. Measurement of the $ t\overline{t} $ production cross section in the dilepton channel in pp collisions at $ \sqrt{s} $ = 8 TeV , 2013 .
[8] A. V. Smirnov,et al. FIESTA 3: Cluster-parallelizable multiloop numerical calculations in physical regions , 2013, Comput. Phys. Commun..
[9] Hua Xing Zhu,et al. The complete two-loop integrated jet thrust distribution in soft-collinear effective theory , 2013, Journal of High Energy Physics.
[10] Roman N. Lee,et al. Critical points and number of master integrals , 2013, 1308.6676.
[11] E. Panzer. On the analytic computation of massless propagators in dimensional regularization , 2013, 1305.2161.
[12] Gudrun Heinrich,et al. Massive non-planar two-loop four-point integrals with SecDec 2.1 , 2013, Comput. Phys. Commun..
[13] R. N. Lee. Presenting LiteRed: a tool for the Loop InTEgrals REDuction , 2012, 1212.2685.
[14] A. Smirnov,et al. Expansion by regions: revealing potential and Glauber regions automatically , 2012, 1206.0546.
[15] Gudrun Heinrich,et al. Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0 , 2012, Comput. Phys. Commun..
[16] A. von Manteuffel,et al. Reduze 2 - Distributed Feynman Integral Reduction , 2012, 1201.4330.
[17] V. Smirnov,et al. Analytic epsilon expansion of three-loop on-shell master integrals up to four-loop transcendentality weight , 2011 .
[18] Gudrun Heinrich,et al. SecDec: A general program for sector decomposition , 2010, Comput. Phys. Commun..
[19] A. Pak,et al. Geometric approach to asymptotic expansion of Feynman integrals , 2010, 1011.4863.
[20] V. Smirnov,et al. Analytic Epsilon Expansions of Master Integrals Corresponding to Massless Three-Loop Form Factors and Three-Loop g-2 up to Four-Loop Transcendentality Weight , 2010, 1010.1334.
[21] R. N. Lee. Calculating multiloop integrals using dimensional recurrence relation and D-analyticity , 2010, 1007.2256.
[22] A. Smirnov,et al. The Number of Master Integrals is Finite , 2010, 1004.4199.
[23] C. Studerus,et al. Calculation of the quark and gluon form factors to three loops in QCD , 2010, 1004.3653.
[24] Christian Bogner,et al. Feynman graph polynomials , 2010, 1002.3458.
[25] V. A. Smirnov,et al. Analytic results for massless three-loop form factors , 2010, 1001.2887.
[26] C. Studerus,et al. Reduze - Feynman integral reduction in C++ , 2009, Comput. Phys. Commun..
[27] A. V. Smirnov,et al. FIESTA 2: Parallelizeable multiloop numerical calculations , 2009, Comput. Phys. Commun..
[28] R. N. Lee,et al. Space-time dimensionality D as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D , 2009, 0911.0252.
[29] F. Brown. On the periods of some Feynman integrals , 2009, 0910.0114.
[30] A. V. Smirnov,et al. Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA) , 2008, Comput. Phys. Commun..
[31] Francis Brown,et al. The Massless Higher-Loop Two-Point Function , 2008, 0804.1660.
[32] Christian Bogner,et al. Operating system: Unix , 1983 .
[33] T. Huber,et al. Two-loop quark and gluon form factors in dimensional regularisation , 2005, hep-ph/0507061.
[34] Kirill Melnikov,et al. A new method for real radiation at next-to-next-to-leading order , 2004 .
[35] C. Anastasiou,et al. A new method for real radiation at NNLO , 2003, hep-ph/0311311.
[36] D. Binosi,et al. JaxoDraw: A graphical user interface for drawing Feynman diagrams , 2003, Comput. Phys. Commun..
[37] S. Laporta,et al. HIGH-PRECISION CALCULATION OF MULTILOOP FEYNMAN INTEGRALS BY DIFFERENCE EQUATIONS , 2000, hep-ph/0102033.
[38] C. Anastasiou,et al. The On-shell massless planar double box diagram with an irreducible numerator , 2000, hep-ph/0005328.
[39] T. Binoth,et al. An automatized algorithm to compute infrared divergent multi-loop integrals , 2000, hep-ph/0004013.
[40] V. Smirnov. Problems of the strategy of regions , 1999, hep-ph/9907471.
[41] V. Smirnov,et al. Analytical results for dimensionally regularized massless on-shell double boxes with arbitrary indices and numerators , 1999 .
[42] V. Smirnov. Analytical result for dimensionally regularized massless on shell double box , 1999, hep-ph/9905323.
[43] V. Smirnov,et al. The regional strategy in the asymptotic expansion of two-loop vertex feynman diagrams , 1998, hep-ph/9812529.
[44] M. Beneke,et al. Asymptotic expansion of Feynman integrals near threshold , 1997, hep-ph/9711391.
[45] Tarasov. Connection between Feynman integrals having different values of the space-time dimension. , 1996, Physical review. D, Particles and fields.
[46] L. Dixon,et al. Dimensionally-regulated pentagon integrals☆ , 1993, hep-ph/9306240.
[47] L. Dixon,et al. Dimensionally regulated one-loop integrals , 1992, hep-ph/9212308.
[48] J. Honkonen,et al. Three-loop calculation of the random walk problem: an application of dimensional transformation and the uniqueness method , 1990 .
[49] F. Tkachov,et al. Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .
[50] F. Tkachov. A theorem on analytical calculability of 4-loop renormalization group functions , 1981 .
[51] W. Marciano,et al. Dimensional regularization of infrared divergences , 1975 .
[52] G. Hooft,et al. Regularization and Renormalization of Gauge Fields , 1972 .