A quasi-finite basis for multi-loop Feynman integrals

[1]  E. Panzer Feynman integrals and hyperlogarithms , 2015, 1506.07243.

[2]  A. V. Smirnov,et al.  FIRE5: A C++ implementation of Feynman Integral REduction , 2014, Comput. Phys. Commun..

[3]  E. Panzer Feynman integrals via hyperlogarithms , 2014, 1407.0074.

[4]  Andreas von Manteuffel,et al.  A novel approach to integration by parts reduction , 2014, ArXiv.

[5]  Erik Panzer,et al.  Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals , 2014, Comput. Phys. Commun..

[6]  E. Panzer On hyperlogarithms and Feynman integrals with divergences and many scales , 2014, 1401.4361.

[7]  A. A. Ocampo Rios,et al.  Measurement of the $ t\overline{t} $ production cross section in the dilepton channel in pp collisions at $ \sqrt{s} $ = 8 TeV , 2013 .

[8]  A. V. Smirnov,et al.  FIESTA 3: Cluster-parallelizable multiloop numerical calculations in physical regions , 2013, Comput. Phys. Commun..

[9]  Hua Xing Zhu,et al.  The complete two-loop integrated jet thrust distribution in soft-collinear effective theory , 2013, Journal of High Energy Physics.

[10]  Roman N. Lee,et al.  Critical points and number of master integrals , 2013, 1308.6676.

[11]  E. Panzer On the analytic computation of massless propagators in dimensional regularization , 2013, 1305.2161.

[12]  Gudrun Heinrich,et al.  Massive non-planar two-loop four-point integrals with SecDec 2.1 , 2013, Comput. Phys. Commun..

[13]  R. N. Lee Presenting LiteRed: a tool for the Loop InTEgrals REDuction , 2012, 1212.2685.

[14]  A. Smirnov,et al.  Expansion by regions: revealing potential and Glauber regions automatically , 2012, 1206.0546.

[15]  Gudrun Heinrich,et al.  Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0 , 2012, Comput. Phys. Commun..

[16]  A. von Manteuffel,et al.  Reduze 2 - Distributed Feynman Integral Reduction , 2012, 1201.4330.

[17]  V. Smirnov,et al.  Analytic epsilon expansion of three-loop on-shell master integrals up to four-loop transcendentality weight , 2011 .

[18]  Gudrun Heinrich,et al.  SecDec: A general program for sector decomposition , 2010, Comput. Phys. Commun..

[19]  A. Pak,et al.  Geometric approach to asymptotic expansion of Feynman integrals , 2010, 1011.4863.

[20]  V. Smirnov,et al.  Analytic Epsilon Expansions of Master Integrals Corresponding to Massless Three-Loop Form Factors and Three-Loop g-2 up to Four-Loop Transcendentality Weight , 2010, 1010.1334.

[21]  R. N. Lee Calculating multiloop integrals using dimensional recurrence relation and D-analyticity , 2010, 1007.2256.

[22]  A. Smirnov,et al.  The Number of Master Integrals is Finite , 2010, 1004.4199.

[23]  C. Studerus,et al.  Calculation of the quark and gluon form factors to three loops in QCD , 2010, 1004.3653.

[24]  Christian Bogner,et al.  Feynman graph polynomials , 2010, 1002.3458.

[25]  V. A. Smirnov,et al.  Analytic results for massless three-loop form factors , 2010, 1001.2887.

[26]  C. Studerus,et al.  Reduze - Feynman integral reduction in C++ , 2009, Comput. Phys. Commun..

[27]  A. V. Smirnov,et al.  FIESTA 2: Parallelizeable multiloop numerical calculations , 2009, Comput. Phys. Commun..

[28]  R. N. Lee,et al.  Space-time dimensionality D as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D , 2009, 0911.0252.

[29]  F. Brown On the periods of some Feynman integrals , 2009, 0910.0114.

[30]  A. V. Smirnov,et al.  Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA) , 2008, Comput. Phys. Commun..

[31]  Francis Brown,et al.  The Massless Higher-Loop Two-Point Function , 2008, 0804.1660.

[32]  Christian Bogner,et al.  Operating system: Unix , 1983 .

[33]  T. Huber,et al.  Two-loop quark and gluon form factors in dimensional regularisation , 2005, hep-ph/0507061.

[34]  Kirill Melnikov,et al.  A new method for real radiation at next-to-next-to-leading order , 2004 .

[35]  C. Anastasiou,et al.  A new method for real radiation at NNLO , 2003, hep-ph/0311311.

[36]  D. Binosi,et al.  JaxoDraw: A graphical user interface for drawing Feynman diagrams , 2003, Comput. Phys. Commun..

[37]  S. Laporta,et al.  HIGH-PRECISION CALCULATION OF MULTILOOP FEYNMAN INTEGRALS BY DIFFERENCE EQUATIONS , 2000, hep-ph/0102033.

[38]  C. Anastasiou,et al.  The On-shell massless planar double box diagram with an irreducible numerator , 2000, hep-ph/0005328.

[39]  T. Binoth,et al.  An automatized algorithm to compute infrared divergent multi-loop integrals , 2000, hep-ph/0004013.

[40]  V. Smirnov Problems of the strategy of regions , 1999, hep-ph/9907471.

[41]  V. Smirnov,et al.  Analytical results for dimensionally regularized massless on-shell double boxes with arbitrary indices and numerators , 1999 .

[42]  V. Smirnov Analytical result for dimensionally regularized massless on shell double box , 1999, hep-ph/9905323.

[43]  V. Smirnov,et al.  The regional strategy in the asymptotic expansion of two-loop vertex feynman diagrams , 1998, hep-ph/9812529.

[44]  M. Beneke,et al.  Asymptotic expansion of Feynman integrals near threshold , 1997, hep-ph/9711391.

[45]  Tarasov Connection between Feynman integrals having different values of the space-time dimension. , 1996, Physical review. D, Particles and fields.

[46]  L. Dixon,et al.  Dimensionally-regulated pentagon integrals☆ , 1993, hep-ph/9306240.

[47]  L. Dixon,et al.  Dimensionally regulated one-loop integrals , 1992, hep-ph/9212308.

[48]  J. Honkonen,et al.  Three-loop calculation of the random walk problem: an application of dimensional transformation and the uniqueness method , 1990 .

[49]  F. Tkachov,et al.  Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .

[50]  F. Tkachov A theorem on analytical calculability of 4-loop renormalization group functions , 1981 .

[51]  W. Marciano,et al.  Dimensional regularization of infrared divergences , 1975 .

[52]  G. Hooft,et al.  Regularization and Renormalization of Gauge Fields , 1972 .