Fabrication of photonic crystals in rare-earth doped chalcogenide glass films for enhanced upconversion

Gallium lanthanum oxysulfide (GLSO) is a promising host material for observing strong upconversion emission from trivalent rare-earth ions such as erbium (Er3+). Its attractive properties include high rare-earth solubility due to the lanthanum content of the glass former, a high refractive index (n = 2.2 at 550nm) for high radiative efficiency, and a low maximum phonon energy of approximately 425cm -1. Photonic crystals meanwhile can provide controlled light extraction, and may be capable of suppressing unwanted IR emission from lower lying metastable states. Here, we describe the fabrication of photonic crystals in annealed films of Er3+-doped GLSO deposited by RF sputtering. The most intense visible upconversion emission is observed in films annealed at 550°C, close to the bulk glass transition temperature. Hexagonal lattice photonic crystals are subsequently milled into the films using a focused ion beam (FIB). The milling parameters are optimized to produce the most vertical sidewall profile.

[1]  Vladimir P. Bykov Spontaneous Emission in a Periodic Structure , 1972 .

[2]  Fan Zhang,et al.  Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals , 2010 .

[3]  Virginie Nazabal,et al.  Gallium-lanthanum-sulphide amorphous thin films prepared by pulsed laser deposition , 2009 .

[4]  Daniel W. Hewak,et al.  Silver-doped germanium sulphide glass channel waveguides fabricated by chemical vapour deposition and photo-dissolution process , 2006 .

[5]  Thorsten Schweizer,et al.  Rare-earth-doped gallium lanthanum sulphide glasses for mid-infrared fibre lasers , 2000 .

[6]  Tanya M. Monro,et al.  Advances in gallium lanthanum sulphide glass for optical fiber and devices , 2001, SPIE Optics East.

[7]  David N. Payne,et al.  Halide-modified Ga–La sulfide glasses with improved fiber-drawing and optical properties for Pr3+-doped fiber amplifiers at 1.3 μm , 1997 .

[8]  Philip St. J. Russell Photonic band gaps , 1992 .

[9]  Mauro Prasciolu,et al.  Focused ion beam lithography for two dimensional array structures for photonic applications , 2005 .

[10]  T. Asano,et al.  Spontaneous-emission control by photonic crystals and nanocavities , 2007 .

[11]  Younes Messaddeq,et al.  Frequency upconversion in Er3+/Yb3+-codoped chalcogenide glass , 1998 .

[12]  Leslie Brandon Shaw,et al.  Sputtered films of Er 3+-doped gallium lanthanum sulfide glass , 2006 .

[13]  Andrew M. Minor,et al.  Focused Ion Beam Microscopy and Micromachining , 2007 .

[14]  Albert Polman,et al.  On-chip green silica upconversion microlaser. , 2009, Optics letters.

[15]  Richard J. Curry,et al.  Chalcogenide glass thin films and planar waveguides , 2005 .

[16]  J. Sanghera,et al.  Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass. , 2006, Optics express.

[17]  Christos Riziotis,et al.  Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification , 2002 .

[18]  David N. Payne,et al.  Spectral properties of Er 3+-doped gallium lanthanum sulphide glass , 1996 .

[19]  M. Migliuolo,et al.  Er-doped glass ridge-waveguide amplifiers fabricated with a collimated sputter deposition technique , 1997, IEEE Photonics Technology Letters.

[20]  Chun-Hua Yan,et al.  Colour modification action of an upconversion photonic crystal. , 2009, Chemical communications.

[21]  H.T. Nguyen,et al.  High index contrast waveguides in chalcogenide glass and polymer , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  A. K. Mairaj,et al.  Optical waveguides and lasers in improved gallium lanthanum sulphide glass , 2003 .

[23]  Harvey N. Rutt,et al.  Optical properties of laser ablated gallium lanthanum sulphide chalcogenide glass thin films prepared at different deposition laser energy densities , 1997 .

[24]  Anderson S. L. Gomes,et al.  Frequency upconversion in Er3+ doped PbO-GeO2 glasses containing metallic nanoparticles , 2007 .

[25]  Trevor M. Benson,et al.  Fine embossing of chalcogenide glasses: First time submicron definition of surface embossed features , 2007 .

[26]  Christian Seassal,et al.  Confinement of band-edge modes in a photonic crystal slab. , 2007, Optics express.

[27]  Peter Ewen,et al.  Fabrication of photonic band gap structures in As40S60 by focused ion beam milling , 2000 .

[28]  Steve Madden,et al.  Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam. , 2005, Optics express.

[29]  David N. Payne,et al.  Visible upconversion in rare-earth doped gallium lanthanum sulphide based glasses , 1998 .

[30]  Jacek Swiatkiewicz,et al.  Enhancement of two-photon emission in photonic crystals. , 2002, Optics letters.

[31]  Robert Withnall,et al.  Rare-earth element anti-Stokes emission from three inverse photonic lattices , 2002 .

[32]  Siyuan Yu,et al.  Focused ion beam-based fabrication of nanostructured photonic devices , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  Tomas Kohoutek,et al.  Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films. , 2009, Optics letters.

[34]  Markus Pollnau,et al.  Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon , 2007 .

[35]  Trevor M. Benson,et al.  One-step hot embossing of optical rib waveguides in chalcogenide glasses , 2008 .