Carrier signal injection based sensorless control methods for IPM synchronous machine drives

This paper presents a comparison of carrier signal injection methods for sensorless torque and motion control of interior permanent magnet synchronous machine (IPMSM) drives. Rotor position can be identified at standstill and higher speeds by using one of two spatial saliency based high frequency carrier signal injection methods: rotating vector in the stationary frame or pulsating vector in the estimated rotor frame. Carrier currents for both rotating and pulsating voltage carrier injection are derived by using an IPMSM model for high frequency. An appropriate carrier signal extraction and a spatial saliency tracking scheme for both injection methods are developed for robust sensorless control. By interfering with the spatial saliency, saturation-induced saliencies act as disturbances to the rotor position estimation. Modeling, measurement, and analysis of the undesirable saturation-induced saliencies are presented for both carrier signal injection methods.

[1]  Jung-Ik Ha,et al.  Sensorless position control and initial position estimation of an interior permanent magnet motor , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).

[2]  R.D. Lorenz,et al.  Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods , 2005, IEEE Transactions on Industry Applications.

[3]  M. J. Corley,et al.  Rotor position and velocity estimation for a permanent magnet synchronous machine at standstill and high speeds , 1996, IAS '96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting.

[4]  Alfio Consoli,et al.  Sensorless control of PM synchronous motors at zero speed , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[5]  Robert D. Lorenz,et al.  Transducerless position and velocity estimation in induction and salient AC machines , 1994, Proceedings of 1994 IEEE Industry Applications Society Annual Meeting.

[6]  R. D. Lorenz,et al.  Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds , 1998 .

[7]  M. W. Degner,et al.  Dynamic operation of carrier signal injection based sensorless, direct field oriented AC drives , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[8]  Mark Sumner,et al.  Suppression of saturation saliency effects for the sensorless position control of induction motor drives under loaded conditions , 2000, IEEE Trans. Ind. Electron..

[9]  R. Lorenz,et al.  Using multiple saliencies for the estimation of flux, position, and velocity in AC machines , 1997, IAS '97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting.

[10]  Mark Sumner,et al.  Analysis and suppression of high-frequency inverter modulation in sensorless position-controlled induction machine drives , 2003 .

[11]  Robert D. Lorenz,et al.  Using on-line parameter estimation to improve efficiency of IPM machine drives , 2002, 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289).

[12]  R. Lorenz,et al.  A novel method for initial rotor position estimation for IPM synchronous machine drives , 2004, IEEE Transactions on Industry Applications.

[13]  Shin-ichi Kondo,et al.  Armature current locus based estimation method of rotor position of permanent magnet synchronous motor without mechanical sensor , 1995, IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting.

[14]  Toshihiko Noguchi,et al.  Initial rotor position estimation method of sensorless PM synchronous motor with no sensitivity to armature resistance , 1998, IEEE Trans. Ind. Electron..

[15]  Robert D. Lorenz,et al.  Measuring, modeling and decoupling of saturation-induced saliencies in carrier signal injection-based sensorless AC drives , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).

[16]  R D Lorenz OBSERVERS AND STATE FILTERS IN DRIVES AND POWER ELECTRONICS , 2002 .

[17]  F. Briz,et al.  Static and dynamic behavior of saturation-induced saliencies and their effect on carrier signal based sensorless AC drives , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).