Reinforcement Learning with Neural Networks for Quantum Feedback

Machine learning with artificial neural networks is revolutionizing science. The most advanced challenges require discovering answers autonomously. This is the domain of reinforcement learning, where control strategies are improved according to a reward function. The power of neural-network-based reinforcement learning has been highlighted by spectacular recent successes, such as playing Go, but its benefits for physics are yet to be demonstrated. Here, we show how a network-based "agent" can discover complete quantum-error-correction strategies, protecting a collection of qubits against noise. These strategies require feedback adapted to measurement outcomes. Finding them from scratch, without human guidance, tailored to different hardware resources, is a formidable challenge due to the combinatorially large search space. To solve this, we develop two ideas: two-stage learning with teacher/student networks and a reward quantifying the capability to recover the quantum information stored in a multi-qubit system. Beyond its immediate impact on quantum computation, our work more generally demonstrates the promise of neural-network-based reinforcement learning in physics.

[1]  Alex W Chin,et al.  Reply to Reviewers Comments , 2018 .

[2]  Tzyh Jong Tarn,et al.  Fidelity-Based Probabilistic Q-Learning for Control of Quantum Systems , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[3]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[4]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[5]  Liang Jiang,et al.  Implementing a universal gate set on a logical qubit encoded in an oscillator , 2016, Nature Communications.

[6]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[7]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[8]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[9]  David J. Schwab,et al.  A high-bias, low-variance introduction to Machine Learning for physicists , 2018, Physics reports.

[10]  Y. Salathe,et al.  Deterministic quantum teleportation with feed-forward in a solid state system , 2013, Nature.

[11]  Alexander Hentschel,et al.  Machine learning for precise quantum measurement. , 2009, Physical review letters.

[12]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[13]  Barry C. Sanders,et al.  Learning in quantum control: High-dimensional global optimization for noisy quantum dynamics , 2016, Neurocomputing.

[14]  Giacomo Torlai,et al.  Neural Decoder for Topological Codes. , 2016, Physical review letters.

[15]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[16]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[17]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[18]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[19]  Stefan Schaal,et al.  Natural Actor-Critic , 2003, Neurocomputing.

[20]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[21]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[22]  Ken E. Whelan,et al.  The Automation of Science , 2009, Science.

[23]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[24]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[25]  Robert H. Hadfield,et al.  Superconducting Devices in Quantum Optics , 2016 .

[26]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[27]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[28]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[29]  Peter D. Johnson,et al.  QVECTOR: an algorithm for device-tailored quantum error correction , 2017, 1711.02249.

[30]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[31]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[32]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[33]  Sham M. Kakade,et al.  A Natural Policy Gradient , 2001, NIPS.

[34]  Austin G. Fowler,et al.  Cavity grid for scalable quantum computation with superconducting circuits , 2007, 0706.3625.

[35]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[36]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[37]  Mario Krenn,et al.  Active learning machine learns to create new quantum experiments , 2017, Proceedings of the National Academy of Sciences.

[38]  José Miguel Hernández-Lobato,et al.  Taking gradients through experiments: LSTMs and memory proximal policy optimization for black-box quantum control , 2018, ISC Workshops.

[39]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[42]  P. Baireuther,et al.  Machine-learning-assisted correction of correlated qubit errors in a topological code , 2017, 1705.07855.

[44]  Barry C. Sanders,et al.  An efficient algorithm for optimizing adaptive quantum metrology processes , 2011, 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology.

[45]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[46]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[47]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[48]  Andrew W. Cross,et al.  Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits. , 2017, Physical review letters.

[49]  C. C. Bultink,et al.  Feedback control of a solid-state qubit using high-fidelity projective measurement. , 2012, Physical review letters.

[50]  John Salvatier,et al.  Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.

[51]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[52]  Moritz August,et al.  Using Recurrent Neural Networks to Optimize Dynamical Decoupling for Quantum Memory , 2016, ArXiv.

[53]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[54]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[55]  Liang Jiang,et al.  Deep Neural Network Probabilistic Decoder for Stabilizer Codes , 2017, Scientific Reports.

[56]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[57]  Victor V. Albert,et al.  Dynamically protected cat-qubits: a new paradigm for universal quantum computation , 2013, 1312.2017.

[58]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[59]  Mazyar Mirrahimi,et al.  Persistent control of a superconducting qubit by stroboscopic measurement feedback , 2012, 1301.6095.

[60]  H. J. Briegel,et al.  Adaptive quantum computation in changing environments using projective simulation , 2014, Scientific Reports.

[61]  Marin Bukov,et al.  Machine Learning Meets Quantum State Preparation. The Phase Diagram of Quantum Control , 2017 .

[62]  Jing Peng,et al.  Function Optimization using Connectionist Reinforcement Learning Algorithms , 1991 .

[63]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[64]  Jonas Helsen,et al.  A crossbar network for silicon quantum dot qubits , 2017, Science Advances.

[65]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[66]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[67]  L. DiCarlo,et al.  Digital feedback in superconducting quantum circuits , 2015, 1508.01385.