Entropy analysis of systems exhibiting negative probabilities

Abstract This paper addresses the concept of negative probability and its impact upon entropy. An analogy between the probability generating functions, in the scope of quasiprobability distributions, and the Grunwald–Letnikov definition of fractional derivatives, is explored. Two distinct cases producing negative probabilities are formulated and their distinct meaning clarified. Numerical calculations using the Shannon entropy characterize further the characteristics of the two limit cases.

[1]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[2]  Xuan Zhao,et al.  Second-order approximations for variable order fractional derivatives: Algorithms and applications , 2015, J. Comput. Phys..

[3]  L. I. Manevitch,et al.  Energy exchange and transition to localization in the asymmetric Fermi-Pasta-Ulam oscillatory chain , 2013 .

[4]  Markus Müller,et al.  How to Add a Noninteger Number of Terms: From Axioms to New Identities , 2010, Am. Math. Mon..

[5]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[6]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[7]  R. Cole,et al.  Dielectric Relaxation in Glycerol, Propylene Glycol, and n‐Propanol , 1951 .

[8]  Chris Adami,et al.  Information theory of quantum entanglement and measurement , 1998 .

[9]  D. Sokolovski Weak values, 'negative probability', and the uncertainty principle , 2007 .

[10]  D. Schleicher,et al.  Fractional sums and Euler-like identities , 2005, math/0502109.

[11]  Stefan Samko,et al.  Fractional integration and differentiation of variable order: an overview , 2012, Nonlinear Dynamics.

[12]  K. Cole,et al.  ELECTRIC IMPEDANCE OF ARBACIA EGGS , 1936, The Journal of general physiology.

[13]  Andreas Blass,et al.  Negative probability , 1945, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Leon Cohen,et al.  Time Frequency Analysis: Theory and Applications , 1994 .

[15]  R. Gray Entropy and Information Theory , 1990, Springer New York.

[16]  J. Acacio de Barros,et al.  Exploring non-signalling polytopes with negative probability , 2014, 1404.3831.

[17]  Nandamudi L. Vijaykumar,et al.  Gradient pattern analysis of structural dynamics: application to molecular system relaxation , 2003 .

[18]  H. Hofmann How to simulate a universal quantum computer using negative probabilities , 2008, 0805.0029.

[19]  Dominik Sierociuk,et al.  Derivation, interpretation, and analog modelling of fractional variable order derivative definition , 2013, 1304.5072.

[20]  Fred Kronz Non-monotonic Probability Theory and Photon Polarization , 2007, J. Philos. Log..

[21]  Gunter Ludwig,et al.  CHAPTER IV – The Physical Interpretation of Quantum Mechanics , 1968 .

[22]  Local hidden-variable models and negative-probability measures , 2000, quant-ph/0010091.

[23]  A. Bracken,et al.  Waiting for the quantum bus: the flow of negative probability , 2014 .

[24]  Shengjun Wu,et al.  Negative probabilities and information gain in weak measurements , 2012, 1212.6324.

[25]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[26]  H. Tijms,et al.  NEGATIVE PROBABILITIES AT WORK IN THE M/D/1 QUEUE , 2006, Probability in the Engineering and Informational Sciences.

[27]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[28]  Andrei Khrennikov,et al.  Interpretations of Probability , 1999 .

[29]  Jean-Pierre Vigier,et al.  A review of extended probabilities , 1986 .

[30]  K. Cole,et al.  Dispersion and Absorption in Dielectrics II. Direct Current Characteristics , 1942 .

[31]  ELECTRIC IMPEDANCE OF ASTERIAS EGGS , 1936, The Journal of general physiology.

[32]  M. Zaky,et al.  Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation , 2014, Nonlinear Dynamics.

[33]  D. Schleicher,et al.  How to add a non-integer number of terms, and how to produce unusual infinite summations , 2005 .

[34]  D. Leibfried,et al.  Shadows and Mirrors: Reconstructing Quantum States of Atom Motion , 1998 .

[35]  José António Tenreiro Machado,et al.  Fractional Order Generalized Information , 2014, Entropy.

[36]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[37]  Duarte Valério,et al.  Variable-order fractional derivatives and their numerical approximations , 2011, Signal Process..

[38]  Ludwig Boltzmann,et al.  Vorlesungen über Gastheorie , 2009 .

[39]  R. Cole,et al.  Dielectric Relaxation in Glycerine , 1950 .

[41]  Samson Abramsky,et al.  An Operational Interpretation of Negative Probabilities and No-Signalling Models , 2014, Horizons of the Mind.

[42]  J. A. Tenreiro Machado,et al.  Matrix fractional systems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[43]  J. A. Tenreiro Machado,et al.  Fractional coins and fractional derivatives , 2013 .

[44]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[45]  G. Meissner,et al.  Negative Probabilities in Financial Modeling , 2011 .

[46]  Paul Adrien Maurice Dirac,et al.  Bakerian Lecture - The physical interpretation of quantum mechanics , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[47]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[48]  Marcel Ausloos,et al.  Complex-valued information entropy measure for networks with directed links (digraphs). Application to citations by community agents with opposite opinions , 2013, The European Physical Journal B.

[49]  B. Ross,et al.  Integration and differentiation to a variable fractional order , 1993 .

[50]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[51]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[52]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[53]  Reinaldo R. Rosa,et al.  Generalized complex entropic form for gradient pattern analysis of spatio-temporal dynamics , 2000 .

[54]  António M. Lopes,et al.  Rhapsody in fractional , 2014 .

[55]  E. T. Jaynes Gibbs vs Boltzmann Entropies , 1965 .

[56]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.