Regional Gravity Field Modeling: Theory and Practical Results

Geodesy, with its three core areas positioning and reference systems, Earth rotation determination, and gravity field modeling, is striving for a relative accuracy of at least 10−9 for all relevant quantities, and to a great extent this goal has already been reached (10−9 corresponds to about 6 mm relative to the Earth’s radius and \( 10^{ - 8} \,{\text{ms}}^{ - 2} = 1\,\upmu {\text{Gal}} \) in terms of gravity). Regarding gravity field modeling, the highest accuracy demands are from geodesy, especially Global Navigation Satellite System (GNNS) positioning, oceanography, and geophysics. In this context, the geoid and quasigeoid are of major interest; e.g., these quantities are required for the transformation between the purely geometric GNSS (ellipsoidal) heights and gravity field related heights as well as for the modeling of the (mean) dynamic ocean topography (DOT), requiring accuracies at the level of about 1 cm or even below. In this way, the importance of geoid and quasigeoid modelling has increased considerably—also for economic reasons—and as early as 1982 Torge (1982) postulated a “renaissance of the geoid.”

[1]  Sergei A. Klioner,et al.  Geodesy and relativity , 2008 .

[2]  F. Sansò,et al.  Fast spherical collocation: theory and examples , 2003 .

[3]  J. Kouba,et al.  Earth's Dimension Specified by Geoidal Geopotential , 2002 .

[4]  The New Height System in Switzerland , 2002 .

[5]  M. Kern A Comparison of Data Weighting Methods for the Combination of Satellite and Local Gravity Data , 2004 .

[6]  J. Wahr Time-Variable Gravity from Satellites , 2007 .

[7]  Local geoid determination and comparison with GPS results , 1987 .

[8]  Günter Seeber,et al.  Accuracy analysis of vertical deflection data observed with the Hannover Digital Zenith Camera System TZK2-D , 2008 .

[9]  W. Strange An evaluation of orthometric height accuracy using bore hole gravimetry , 1982 .

[10]  H. Moritz Integral Formulas and Collocation , 1975 .

[11]  N. K. Pavlis,et al.  The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96 , 1998 .

[12]  R. Hipkin Ellipsoidal geoid computation , 2004 .

[13]  Christian Hirt Entwicklung und Erprobung eines digitalen Zenitkamerasystems für die hochpräzise Lotabweichungsbestimmung , 2004 .

[14]  Investigation of the Molodensky series terms for terrain reduced gravity field data , 1999 .

[15]  Lars E. Sjöberg,et al.  A general model for modifying Stokes’ formula and its least-squares solution , 2003 .

[16]  M. I. Yurkina,et al.  Methods for study of the external gravitational field and figure of the earth , 1962 .

[17]  D. A. Smith,et al.  GEOID99 and G99SSS: 1-arc-minute geoid models for the United States , 2001 .

[18]  T. Krarup,et al.  A contribution to the mathematical foundation of physical geodesy. , 1969 .

[19]  W. Macmillan,et al.  The theory of the potential , 1930 .

[20]  黄晓燕,et al.  IgG , 2010, Definitions.

[21]  C. Tscherning Functional Methods for Gravity Field Approximation , 1986 .

[22]  Jianliang Huang,et al.  The Canadian Gravimetric Geoid Model 2005 ( CGG 2005 ) , 2007 .

[23]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[24]  Wolfgang Torge,et al.  The European Gravimetric Quasigeoid EGG97 - An IAG Supported Continental Enterprise - , 1998 .

[25]  Jakob Flury,et al.  Astronomical-topographic levelling using high-precision astrogeodetic vertical deflections and digital terrain model data , 2008 .

[26]  R. Rummel,et al.  Strategies for Solving the Vertical Datum Problem Using Terrestrial and Satellite Geodetic Data , 1990 .

[27]  R. Forsberg,et al.  Topographic effects in gravity field modelling for BVP , 1997 .

[28]  Torsten Mayer-Gürr,et al.  Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE , 2008 .

[29]  R. Rummel Spherical spectral properties of the earth's gravitational potential and its first and second derivatives , 1997 .

[30]  A. Cazenave,et al.  Time-variable gravity from space and present-day mass redistribution in theEarth system , 2010 .

[31]  C. Tscherning Geoid Determination by Least-square Collocation Using GRAVSOFT , 1994 .

[32]  Walter H. F. Smith,et al.  Global marine gravity from retracked Geosat and ERS‐1 altimetry: Ridge segmentation versus spreading rate , 2009 .

[33]  René Forsberg,et al.  A new covariance model for inertial gravimetry and gradiometry , 1987 .

[34]  Definition of the normal gravity field including the constant part of tides , 1987 .

[35]  R. Rapp,et al.  The influence of the atmosphere on geoid and potential coefficient determinations from gravity data , 1976 .

[36]  Richard H. Rapp,et al.  Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree Variance Models. , 1974 .

[37]  B. Heck Formulation and linearization of boundary value problems: From observables to a mathematical model , 1997 .

[38]  G. Hein Integrated geodesy state-of-the-art 1986 reference text , 1986 .

[39]  Michael G. Sideris,et al.  The use of FFT techniques in physical geodesy , 1990 .

[40]  Gary Johnston,et al.  The AUSGeoid09 model of the Australian Height Datum , 2011 .

[41]  L. Sánchez Approach for the Establishment of a Global Vertical Reference Level , 2008 .

[42]  Heiner Denker Evaluation of SRTM3 and GTOPO30 Terrain Data in Germany , 2005 .

[43]  Ole Baltazar Andersen,et al.  The DNSC08GRA global marine gravity field from double retracked satellite altimetry , 2010 .

[44]  Peter Teunissen,et al.  Height datum definition, height datum connection and the role of the geodetic boundary value problem , 1988 .

[45]  Kurt Seitz,et al.  A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling , 2007 .

[46]  E. W. Grafarend,et al.  The definition of the telluroid , 1978 .

[47]  F. Sansò,et al.  Statistical methods in physical geodesy , 1986 .

[48]  W. M. Kaula Theory of satellite geodesy , 1966 .

[49]  Convergence of the UK OSGM05 GRACE-based geoid and the UK fundamental benchmark network , 2008 .

[50]  Laura Sánchez,et al.  A unified global height reference system as a basis for IGGOS , 2005 .

[51]  EUVN_DA: Realization of the European Continental GPS/leveling Network , 2010 .

[52]  Jakob Flury,et al.  On the geoid–quasigeoid separation in mountain areas , 2008 .

[53]  C. Wichiencharoen The indirect effects on the computation of geoid undulations , 1982 .

[54]  A. Eicker,et al.  Deriving daily snapshots of the Earth's gravity field from GRACE L1B data using Kalman filtering , 2009 .

[55]  Lars E. Sjöberg A strict formula for geoid-to-quasigeoid separation , 2010 .

[56]  F. Sansò,et al.  First GOCE gravity field models derived by three different approaches , 2011 .

[57]  H. Moritz,et al.  Geodetic reference system 1980 , 1988 .

[58]  C. Voigt,et al.  Validation of Satellite Gravity Field Models by Regional Terrestrial Data Sets , 2010 .

[59]  F. Flechtner,et al.  Improved Non-tidal Atmospheric and Oceanic De-aliasing for GRACE and SLR Satellites , 2010 .

[60]  R. Rapp Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference , 1997 .

[61]  L. Timmen,et al.  Atmospheric Mass Flow Reduction for Terrestrial Absolute Gravimetry in the Fennoscandian Land Uplift Network , 2007 .

[62]  D. Christodoulidis Influence of the atmospheric masses on the gravitational field of the earth , 1979 .

[63]  C. Tscherning A discussion of the use of spherical approximation or no approximation in gravity field modeling with emphasis on unsolved problems in Least-Squares Collocation , 2004 .

[64]  O. Andersen,et al.  Improved High Resolution Altimetric Gravity Field Mapping (KMS2002 Global Marine Gravity Field) , 2005 .

[65]  M. Fritsche,et al.  Regional geoid determination in Tierra del Fuego including GPS levelling , 2007 .

[66]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[67]  Herbert Meschkowski,et al.  Hilbertsche Räume mit Kernfunktion , 1962 .

[68]  L. L. Helms Introduction to potential theory , 1971 .

[69]  B. Heck On the linearized boundary value problems of physical geodesy , 1991 .

[70]  Gravity Field Variability, the Geoid, and Ocean Dynamics , 2004 .

[71]  B. Heck An evaluation of some systematic error sources affecting terrestrial gravity anomalies , 1990 .

[72]  R. R. Christie A NEW GEODETIC HEIGHTING STRATEGY FOR GREAT BRITAIN , 1994 .

[73]  H. Moritz INTERPOLATION AND PREDICTION OF GRAVITY AND THEIR ACCURACY , 1962 .

[74]  Bernhard Heck,et al.  Rechenverfahren und Auswertemodelle der Landesvermessung : klassische und moderne Methoden , 1987 .

[75]  M. Ekman The permanent problem of the permanent tide : What to do with it in geodetic reference systems ? , 1996 .

[76]  M. Seitz,et al.  Global Terrestrial Reference Systems and Their Realizations , 2013 .

[77]  Y. Wang,et al.  The US Gravimetric Geoid of 2009 (USGG2009): model development and evaluation , 2012, Journal of Geodesy.

[78]  H. Denker Evaluation and Improvement of the EGG97 Quasigeoid Model for Europe by GPS and Leveling Data , 1998 .

[79]  S. Bian Some cubature formulas for singular integrals in physical geodesy , 1997 .

[80]  L. Timmen Absolute and Relative Gravimetry , 2010 .

[81]  M. Popov,et al.  Computation of Ray Amplitudes in Inhomogeneous Media with Curved , 2002 .

[82]  C. Jekeli A numerical study of the divergence of spherical harmonic series of the gravity and height anomalies at the earth's surface , 1983 .

[83]  Carl Wunsch,et al.  On Using Satellite Altimetry to Determine the General Circulation of the Oceans With Application to Geoid Improvement (Paper 80R0631) , 1980 .

[84]  Towards the Unification of the Vertical Datum Over the North American Continent , 2013 .

[85]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[86]  Guochang Xu Sciences of Geodesy - I: Advances and Future Directions , 2014 .

[87]  A. Marussi Foundations of Intrinsic Geodesy , 1985 .

[88]  R. Nerem,et al.  Precision orbit determination for the TOPEX/Poseidon mission , 1992 .

[89]  C. C. Tscherning,et al.  The use of height data in gravity field approximation by collocation , 1981 .

[90]  Christopher Jekeli,et al.  Evaluation of EGM08 - globally, and locally in South Korea , 2009 .

[91]  Markus Roland,et al.  Compilation and Evaluation of a Consistent Marine Gravity Data Set Surrounding Europe , 2005 .

[92]  Gerhard Wübbena,et al.  Mutual validation of GNSS height measurements and high-precision geometric-astronomical leveling , 2011 .

[93]  J. Lemoine,et al.  The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C , 2008 .

[94]  Status of the european gravity and geoid project EGGP , 2005 .

[95]  W. Featherstone,et al.  The rigorous determination of orthometric heights , 2005 .

[96]  The Permanent Tide In Height Systems , 2009 .

[97]  Jean Kovalevsky,et al.  Fundamentals of Astrometry , 2004 .

[98]  P. A. Cross,et al.  Lecture notes in Earth sciences: Vol. 12. S. Turner (Editor), Applied Geodesy VIII, Springer, Berlin, F.R.G., 1987, 393pp, DM78.00, ISBN 3 540 182195 , 1989 .

[99]  C. Readings,et al.  Gravity field and steady-state ocean circulation mission , 1996 .

[100]  M. Ekman Impacts of geodynamic phenomena on systems for height and gravity , 1989 .

[101]  Jingfang Huang,et al.  A Gravimetric Geoid Model for Vertical Datum in Canada , 2004 .

[102]  R. Forsberg,et al.  Generalizing the Harmonic Reduction Procedure in Residual Topographic Modeling , 2012 .

[103]  R. Rummel,et al.  GOCE gravitational gradiometry , 2011 .

[104]  Bernhard Heck Problems in the Definition of Vertical Reference Frames , 2004 .

[105]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[106]  D. Gray,et al.  Geodetic aspects concerning possible subsidence in southeastern England , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[107]  M. Vermeer,et al.  The permanent tide in GPS positioning , 1996 .

[108]  R. Forsberg Modelling the fine-structure of the geoid: Methods, data requirements and some results , 1993 .

[109]  M. M. Chin,et al.  Gravity empirical covariance values for the continental United States , 1984 .

[110]  R. H. Röder,et al.  First results with the transportable absolute gravity meter JILAG-3 , 1987 .

[111]  O. D. Kellogg Foundations of potential theory , 1934 .

[112]  M. Sideris,et al.  A numerical investigation on height anomaly prediction in mountainous areas , 1995 .

[113]  W. Bosch,et al.  Concept for the Realization of a World Height System - Recent Findings of IAG Inter- commission Project 1.2 "Vertical Reference Frames" , 2008 .

[114]  Lars E. Sjöberg,et al.  The atmospheric geoid effects in Stokes' formula , 2000 .

[115]  Steven M. Klosko,et al.  Consideration of permanent tidal deformation in the orbit determination and data analysis for the Topex/Poseidon mission , 1991 .

[116]  F. Sansò,et al.  BVP, Global Models and Residual Terrain Correction , 2009 .

[117]  Christopher Jekeli,et al.  Gravity, Geoid and Space Missions , 2008 .

[118]  C. Beggan,et al.  The geoid EDIN2000 and mean sea surface topography around the British Isles , 2004 .

[119]  P. Vaníček,et al.  GEOID and Its GEOPHYSICAL INTERPRETATIONS , 1993 .

[120]  H. Moritz Advanced Physical Geodesy , 1980 .